editorial

Fouling of Heat Exchangers—New Approaches to Solve an Old Problem
H. Müller-Steinhagen, M. R. Malayeri, and A. P. Watkinson

technology development

Recent Issued United States Patents
Zahid H. Ayub

feature articles

Fouling of Some Canadian Crude Oils
M. Srinivasan and A. P. Watkinson

Fouling Characteristics of a Light Australian Crude Oil
Zaid S. Saleh, R. Sheikholeslami, and A. P. Watkinson

Retrofitting Crude Oil Refinery Heat Exchanger Networks to Minimize Fouling While Maximizing Heat Recovery
B. L. Yeap, D. I. Wilson, G. T. Polley, and S. J. Pugh

Fouling During the Use of Seawater as Coolant—the Development of a User Guide
S. J. Pugh, G. F. Hewitt, and H. Müller-Steinhagen

Biocide Dosing Strategies for Biofilm Control
D. M. Grant and T. R. Bott

Challenges in Cleaning: Recent Developments and Future Prospects
D. I. Wilson

departments

Book Review Corner 60 New Products and Services 64 Hot Dates 71
People and Personalities 63 Product Literature 69 Current Contents 76

cover

The cover shows the tube sheet of a shell and tube heat exchanger with three tube-side passes. The heat exchanger has been used as an evaporator in a sulfuric acid recovery plant. Due to the extremely corrosive nature of the highly concentrated sulfuric acid, tubes and tube sheets have been manufactured from tantalum. Severe deposition of material originally dissolved in the acid requires cleaning at weekly intervals. Tubes inside the tubes were found to be extremely hard and adhesive, resisting even flow velocities up to 5 m/s. Cleaning was accomplished manually by high pressure water blasting with a pressure up to 800 bar.