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ABSTRACT 

Fouling in diesel unit feed/reactor effluent heat 
exchangers is of great concern due to lowering of furnace 
inlet temperature and thus causing an increase in furnace 
heat load, consuming extra fuel energy and as a result of 
these, increasing the unit operational cost. As the delta 
temperature across the fired heater increases due to fouling, 
the unit feed flow also needs to be decreased but with a cost 
of huge margin loss. After a certain delta temperature in the 
furnace, then the unit needs to be shut down for cleaning 
action in the heat exchangers since no further temperature 
rise can be achieved due to the furnace limitations. Fouling 
monitoring and an optimized maintenance period projection 
for the future cycles has been a mandatory work for the 
process engineers in the recent years. In this study, the 
operational data (September, 2005 – December, 2011) 
gathered from Tüpraş İzmir Refinery Diesel 
Hydroprocessing Unit are utilized in the unit simulation in 
order to generate the models for fouling factor (Rf) and 
found that it is directly related with the unit charge type 
(from storage tank, or cracked diesel etc.). Genetic 
algorithm and simulation algorithm run simultaneously in 
order to optimize the system in terms of economic aspects. 
The algorithm includes an objective function to make a 
comparison between marginal process cost and maintenance 
cost due to unit shut down and extra fuel cost arising from 
operating the unit in relatively dirtier conditions. The 
constraints are defined according to the operational 
variables of the unit as well. The optimization results show 
the optimum time period to clean the exchangers.  
 
INTRODUCTION 

Diesel Hydroprocessing Unit (DHP) is designed to 
process diesel to remove sulfur and nitrogen content via 
treatment with hydrogen in the existence of the catalyst. The 
removal is performed by formation of H2S and NH3 in the 
reactor. The feed to the reactor is preheated in exchangers 
by the hot reactor effluent, before being charged to the 
reactor. 
 

 

Figure 1:  Simplified flow chart of equipment’s 

The preheat train consists of two exchangers as shown 
in Fig.1. E-1 and E-2 are shell and tube heat exchangers and 
consist of four shells which are installed in two parallel and 
two series configuration. The shells are identical and tubes 
have four passes per shell.  

Although the unit is designed to operate with a total 
liquid feed flow rate of 400 Sm3/h, as a result of fouling 
inside the tubes of the preheat exchangers, furnace inlet 
temperature decreases and furnace duty increases for 
required constant furnace outlet temperature. Consequently, 
the preheating performance of the exchangers becomes 
inefficient causing an increase in energy consumption. As 
the furnace inlet temperature decreases, unit feed flow rate 
has to be decreased and since furnace duty cannot be 
increased after an allowable limit, unit has to be shut down 
for cleaning of the exchangers.   

O, S and N contents in diesel are of great importance 
in the fouling of exchangers [1,2]. Oxygen dissolved in oil 
and/or oil products, by any means, may cause serious 
fouling problems due to free radical polymer formation 
reactions. Sulphur may be contained in diesel as either 
aromatic or alifatic sulphides. Aromatic sulfides causes 
fouling indirectly, wheras alifatic sulphides are thermally 
very reactive. They break C-S bonds to form H2S. Also 
forming free hydrocarbon radicals, they initialize thermal 
cracking. Additionally, H2S being formed, reacts with the 
tube surface material and iron sulphide is formed. This 
increases corrosion type of fouling. Existence of nitrogen 
dissolved in diesel may also cause complex polimerization 
reactions that increases fouling resistance [3]. 
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METHODOLOGY  
In this study, a simulation algorithm is developed in 

order to calculate overall fouling resistance, Rf, by using 
real time data of diesel hydroprocessing unit (DHP) preheat 
exchangers. Data is taken for each stream such as flow rate, 
temperature, pressure, distillation and gravity from the 
process historian database (PHD) for the desired time period 
and heat exchanger design specifications such as tube 
number, tube diameter, configuration and heat transfer area 
are also entered. Traditionally Rf is computed from the 
difference between the two overall thermal resistances [4]: 
 

Rf  = 1/Ud- 1/Uc     (1) 
 

Using the measured temperatures of shell and tube side 
inlet and outlet streams, flow rate and distillation data, 
physical properties such as density, viscosity and heat 
capacity are determined. Then, overall dirty heat transfer 

coefficient, Ud, is obtained by Eq.(2): 
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                                                                (2) 

 
The clean overall heat transfer coefficient, Uc, is 

determined for the same flow and operation conditions of 
that heat exchanger. For this purpose, an iterative algorithm 
is applied to determine the clean case outlet temperatures of 
shell and tube sides in the defined confidence interval of 0.1 
0C. Firstly, an assumption is made for both tube and shell 
side inlet and outlet temperature difference to estimate the 
clean case outlet temperature data. Then, average 
temperature, all physical properties, individual heat transfer 
coefficients of streams at this average temperature and 
logarithmic mean temperature difference are calculated. 
Afterwards, overall energy balance using overall heat 
transfer coefficient, heat transfer area and logarithmic mean 
temperature and individual energy balances for both streams 
using heat transfer capacity, flow rate and temperature 
differences are performed by Newton-Raphson method to 
calculate the clean outlet temperatures for tube and shell 
sides iteratively. Iterations are performed until the assumed 
and estimated outlet temperature differences for shell and 
tube side are in the defined confidence interval.  

In order to schedule a maintenance program for 
preheat exchangers, overall fouling resistance needs to be 
modeled for the defined future time interval. For this 
purpose, the factors causing the fouling are defined and 
formulated in a general equation (3) for future time 
estimation. The main reasons for fouling are; feed source, 
(whether it is cracked charge from FCC unit, straight run 
from crude oil distillation unit or import from outside 
sources); antifouling chemical usage and others. Therefore, 

the fouling resistance is obtained as a function of these 
parameters by analyzing 7 years of historical data in three 
periods. 
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The terms in Equations (3) relate partial contributions 

to total fouling resistance, Rf, are associated with feed from 
tank (import diesel) and cracking units, combined effects of 
cracked feed and other effects, and the chemical usage rate 
respectively. If the feed is not from tank (import diesel) and 
cracking units (that is, under “normal” conditions), the 
fouling resistance Rf will be equal to just Rf-N. The two 
other terms Rf-T and Rf-C are extra fouling resistances 
associated with the usage of feed from tank or cracking 
units, and the chemical additive usage, respectively. The 
equations are established with using the seven years of 
historical data of the exchangers. This period is analyzed in 
terms of charge type (whether it is a straight run, cracked or 
import diesel) and the chemical usage process. To see the 
individual effects of these operational conditions, the 
fouling rates and the components (straight run, cracked or 
import diesel) in the combined charge are listed for the 
exchangers, that is to say for the import diesel effect (RfT), 
the unit was operated only with import diesel for  three 
years and analyzing the data results with the equation of 
RfT. The similar procedure was reapplied for RfC and RfN 
With the most fitted equation form and constants, Rf, is 
formed.  

The same fouling resistance function written as a 
function of chemical usage rate and different charge sources 
is applied to two exchangers with different parameters since 
fouling occurs in a similar way in these exchangers. These 
models are utilized to project fouling trend of the 
exchangers with a given feed rate (and source distribution) 
and chemical usage rate. After defining the unit operating 
conditions, these parameters are used as an input to the 
optimization function. 

The optimization system consists of an objective 
function, which relates the unit shut down and operating 
costs as follows; 
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yi is a binary variable (yi = 0 or 1). It represents 
whether or not i-th exchanger is considered in cleaning 
program. The value of yi is determined by a genetic 
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algorithm and is substituted into equation (7). This function 
is generated for the whole projected period. The first term in 
Equation (7) refers to the non-cleaned operating expenses of 
the unit which is mainly the difference of heat loads to the 
furnace placed after the exchangers between the clean and 
dirty conditions.  

On the other hand, the second term in Equation (7) 
consists of mainly three components. Individual exchanger 
cleaning cost (maintenance cost) and the cost of extra fuel 
that will be used in the furnace due to shut down of that 
specific exchanger during maintenance depending on the 
by-pass value of the exchanger (z). The last one is the 
marginal operating cost of the unit which should be 
considered when these exchangers are not spared and 
cannot be by-passed. This valu e is unit specific and can 
briefly be defined as difference between the costs of feed to 
this unit and products from this unit. 

The objective function is formed as a function of total 
operating cost of the network due to fouling formation 
during the whole duration of operation. Then the function is 
in the form of (8): 
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Applying the following constraints reduces the 

solution space as well as the amount of computations for 
finding the optimal cleaning schedule by minimizing F in 
Eq. (8)  
 

 By–passing of the exchangers (z values): The 
exchangers in DHP unit are not spared, thus they 
cannot by-passed. 

 Combined shut-down of exchanger groups: Since 
these exchangers cannot be by-passed, maintenance 
for these two exchangers should be programmed 
together.  

 High and low limits of unit operating conditions: The 
maximum allowable difference between inlet and 
outlet temperatures of the furnace is the limit in this 
unit. 

 
The problem that is defined in equation (8) and the 

related constraints is a MINLP problem and in this study, 
the problem is solved using a genetic algorithm.  

The Genetic Based Algorithm : In this study, a hybrid 
algorithm based on the general principles of GA’s and 
Nonlinear Simplex [5] was used to search for the optimum 
values of continuous and discrete design parameters of the 

problem that are generated randomly using the following 
relationships.  

 

  erv   x x hmhi1i      (9) 

y  LB  INT (u sr 0.5)      (10) 

 
where xi is the current optimum for the continuous 
variables. r shows the random numbers in the interval of    
[-0.5, 0.5] and u is the integer variable that can be either 0 
or 1. eh is the vector of the hth coordinate direction and vmh is 
the component of the step vector (vm) along the same 
direction. LB and sr are the vectors of the lower bounds and 
the search region for discrete variables respectively. The 
values of the components of vm were determined as 2.5 
using the test functions taken from literature [6].  The value 
of sr was taken as 1 to generate only 0 and 1 values by 
using the relations 2 and 3. The discrete variables were used 
to determine the alternative heat exchangers to be cleaned.  

The basic steps of the genetic based algorithm (6) are 
given as follows:  

 Encoding and initial population: 
The algorithm uses real value encoding and the initial 
population, consisting of points in the feasible search space, 
is randomly created with a particular population size that is 
chosen as 10xN where N is the number of the variables. 

 The generation of a new population: 
Each new population is formed by applying the following 
operators: 

1. Reproduction: Reproduction is the first operator 
applied on a population and the strings that have the best 
fitting values are picked from the current population and 
duplicates of them are inserted in the mating pool (elitist 
strategy). 

2. Crossover: In the algorithm, the single point 
crossover is preferred and the strings are cut randomly and 
the right side portion of both strings swaps among 
themselves to create the binary variables of the new 
strings. The continuous variables of the new strings are 
created by applying the following crossover operators [2]. 

21offspring x
2

t1
x

2

t1
x

1





   (11) 

21offspring x
2

t1
x

2

t1
x

2





   (12) 

where t is a real number between 0 and 1. The value of t 
was calculated as 0.2 by using the test functions taken from 
literature [6].   
3. Mutation: The position of the strings is determined 
randomly and a mutation operator is applied for that 
position. If the variable at the determined position is binary, 
it was changed depending on the current value. Otherwise, 
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month after the simulation started, the unit needs to be shut 
down for cleaning of heat exchangers. The results of the 
optimization show that, due to increased fouling resistance 
in the exchangers, the delta temperature across the furnace 
difference increases with time. After the exchangers are 
cleaned (11th month), delta T of the furnace again drops to 
lower values. This analysis is performed assuming that all 
user input variables are constant during the projected 
period; the chemical is fed with 20 ppm of rate and the 
feeding from tank is always with a fraction of 0.28. 
However, to get a more accurate optimization study, it is 
better to re-optimize in every changing condition.  
 
CONCLUSIONS 

Fouling monitoring is of great concern to improve unit 
performance and to control extra energy consumptions. For 
this purpose, fouling resistance of Diesel Hydroprocessing 
Unit Feed/Effluent preheat exchangers are simulated and 
modeled using the historical data. The models are generated 
as a function of different feed sources for each exchanger 
present in the network and are utilized in optimization of 
maintenance scheduling.   

The results of the optimization show consistency with 
the operational data. Outlet temperatures from the 
exchangers drop as fouling occurs which leads to higher 
temperature difference and hence higher energy 
consumption in the furnace. However, it should be noted 
that the result of the optimization problem can vary 
depending on the initial projection estimations. Therefore, 
to get a more realistic solution, it is better to run the 
simulation periodically with updated operational variables.  
 
NOMENCLATURE 
F: Objective Function 
FCC: Fluid Catalytic Cracking 
FG: Fuel Gas 
N: Number of exchangers, number of variables 

R: Fouling resistance (h.m2 C/kcal) 

Rf-∞: Highest Fouling resistance (h.m2 C/kcal) 
y: Exchanger cleaning parameter (1: Cleaned, 0: Not 
cleaned) 
Q: Heat transfer rate (kcal/h) 

U: Heat transfer coefficient (kcal/m2 C) 
z: Exchanger by-pass parameter  
    (1: Can be by-passed, 2: Cannot be by-passed) 
θ: Feed from defined source 
κ: unit utilization (current charge/maximum sustained 
    charge) 
t: time (day) 
 
Subscript 
c: clean  

C: chemical additives usage 
d: dirty  
f: fouling  
i: Exchanger  
N: Normal 
T: tank  
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