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ABSTRACT 
 Oil refinery preheat trains can exhibit unwanted two-
phase flow behaviour. An example is boiling of crude oil 
inside heat exchangers, when the local pressure is not high 
enough to keep crude in a liquid state. This often arises 
when the pump is under-sized. Understanding the two-phase 
behaviour and assessing the boiling heat transfer 
coefficients would result in a better prediction and 
estimation of exchanger fouling. Where single-phase 
modelling is used under boiling conditions, the anomalous 
behaviour leads to unrealistic estimates of fouling 
resistance, and can severely under-predict the increased 
pressure drop and consequent loss of crude throughput.  

There is little public information on fouling in two-
phase flows as laboratory experiments are very costly, 
despite the importance of this in refinery heat exchangers 
and furnaces. Indeed, the importance of crude boiling is 
likely to increase as lighter crudes such as shale oils are 
processed. These lighter crudes are often blended with 
heavier crudes to maintain an appropriate refining average 
density.  

This manuscript consists of two sections. The first 
section uses industrial monitoring data to illustrate fouling 
behaviour for a heat exchanger that undergo both boiling 
and fouling. The second section discusses simulations to 
evaluate thermo-hydraulic behaviour when the crude 
undergoes boiling. The analysis requires coupled heat 
transfer, hydraulic and surface fouling aspects, and a 
commercial preheat train network simulator, SmartPM, was 
used for this study. 
 
INTRODUCTION 
 Crude oils are a complex mixture of hydrocarbons and 
impurities; their physical and chemical characteristics vary 
widely from oil reserves and also within the same reserve. 
The mixture includes hydrocarbon components with a range 
of volatilities, water, inorganic salts and various chemicals 
that assist in extraction. Processing of crude oil in refineries 
involves steps such as washing the crude with water to 
remove inorganic salts (desalting) and heating the crude oil 
through a network of heat exchangers (known as the preheat 
train, PHT), to raise its temperature in preparation for 
fractional distillation. The crude is processed at high 
pressures to maintain single-phase flows (liquid state); in a 

typical refinery the local crude pressure could experience 
values as high as 30 bars (IHS ESDU 2007). During crude 
heating in PHT’s, unwanted two-phase flow (boiling) could 
occur when the local pressure is less than the vapour 
pressure of the most volatile component at the local 
operating temperature. Such industrial example was 
reported by Liporace and De Oliveira (2007), where the 
vaporization of crude occurs in heat exchangers 
downstream of the desalter. 

Water carry over during a desalting process could also 
result in water boiling in heat exchangers downstream of the 
desalter. This is often apparent from seemingly very large 
fouling resistance values in those exchangers. Controlling 
the desalting operation is also of great importance to the 
PHT (Ishiyama et al., 2010a); phase behaviour in the PHT 
relating to the desalter operation is not considered in the 
scope of this paper.  
 The main effect of crude oil boiling on fouling rate is 
through the high turbulence created by the bubbles at the 
solid-fluid interface. This turbulence enhances both heat and 
mass transfer. Boiling reduces the boundary layer resistance 
and promotes the flow of fouling precursor towards the 
heated surface. Experimental studies of hydrocarbon fouling 
under boiling conditions were reported by several research 
community: e.g. Huasler and Thalmeyer (1975), Fetissoff et 
al. (1982) and Crittenden and Khater (1984).  
 This paper discusses a methodology to evaluate 
thermo-hydraulic behaviour of a heat exchanger undergoing 
tube-side boiling. This methodology is used to illustrate 
three case studies. First case study is on ‘rating’ the 
performance of an industrial heat exchanger. The second 
and third case studies explore thermo-hydraulic behaviour 
for a hypothetical heat exchanger assuming a linear fouling 
rate; its effect on a simple network is discussed.  
 
MODEL FORMULATION 
 For a heat exchanger undergoing crude boiling on the 
tube-side, the vapour quality present at the tube inlet and at 
the outlet could be significantly different due to variation in 
temperature and pressure along the tube. An example of 
such flow in a horizontal tube is illustrated in Figure 1, 
where the liquid is initially sub-cooled and heated in single-
phase flow. Nucleation begins at point A, and bulk boiling 
at B. When the volume flow rate vapour considerably 
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Comparison with single-phase simulation indicated that 
heat exchangers with in-tube boiling reaches its 
hydraulic limit earlier compared to a single-phase 
operation. 

3. Crude boiling could have considerable effect in a 
network and a simple illustration described the impact 
of boiling on a downstream heat exchanger. 

 
Nomenclature 
A heat transfer area, m2 
C dimensionless parameter in equation (1),  – 
Cf friction factor,  – 
Cp specific heat capacity,  J kg-1 K-1 
d tube diameter, m 
H total enthalpy of the crude, J kg-1 
h film transfer coefficient, W m-2 K-1 
g gravitational acceleration, m s-2 
l tube length, m 
M mass flux, kg s-1 m-2 
m mass flow rate, kg s-1  
Npass number of tube-side passes,  – 
P pressure, pa 
P pressure drop, pa 
p dimensional constants in equation (12), s2 m-5 
Q heat duty, W 
r pump impeller diameter, m 
Rf fouling resistance, m2K W-1 
Rw wall resistance, m2K W-1 
Re Reynolds number, – 
S suppression factor, – 
T  temperature, K 
X Lockhart-Martinelli parameter,  –  
x vapour quality, – 
U overall heat transfer coefficient, W m-2 K-1 
u mean tube-side velocity, m s-1 
V volumetric flow, m3 s-1 

 
Greek 
 deposit thickness, m   
 pump head, m 
s shut-off head, m      
 thermal conductivity, W m-1 K-1 
 density, kg m-3   

  pump rotations speed, rpm 
 
Subscripts 
c cold (crude) stream 
cl clean condition   
co convective    
design design condition   
f foulant 
h hot stream    
i internal 
in at the inlet     
HEX heat exchanger 
L liquid phase    
n nucleate boiling 
o external     
operation operating condition 
out at the outlet    

p piping  
PHT preheat train   
sp single-phase 
TP two-phase     
V vapour-phase 
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Table 3: Liquid-phase thermo-physical properties of the streams in case studies 2 and 3. 

 Density, kg m-3 Thermal conductivity, W m-1 K-1 Specific heat capacity, J kg-1 K-1 Viscosity, cP 
 = b1 (T-273)+ b2 

 = c1 (T-273) + c2 = d1 (T-273) + d2 = e1 exp(e2 /T) 

Stream b1 (kg m-3 K-1), b2 (kg m-3) c1( W m-1 K-2), c2 (W m-1 K-1) d1( J kg-1 K-2), d2 (J kg-1 K-1) e1 ( Pa s), e2 (K) 

Crude -0.890, 860 -0.0004, 0.15 3.46, 1900 6.677E-03, 1952 
Hot 1, 2 -0.726, 920 -0.0002, 0.17 3.50, 1890 2.576E-06, 3077 
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