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ABSTRACT 
The present study uses Kalman filter as a robust 

mathematical tool to accurately and reliably estimate 

crude oil fouling resistances of HTRI data banks. HTRI 

conducted a comprehensive set of crude oil fouling runs 

which will be used as source data in this study. Noise, 

a coherent feature of many fouling processes which can 

result from process irregularities, are considered in the 

model. The Kalman filter minimizes the estimation 

error covariance by considering the measurement and 

process noise covariance matrices. This, in turn, 

requires that process and measurement noise 

covariance are carefully chosen by the statistical 

analysis of measurements and estimations. The relation 

between these two defines the smoothness and shape of 

the estimated trend of fouling resistance. The 

comparison of the experimental data and model 

confirmed the reliability of the applied method for 

qualitative and quantitative estimation of fouling 

resistance for various operating conditions of crude oil 

fouling. 

INTRODUCTION 

       Oil refineries nowadays have to cope with heavier 

crude oils or densified residuals with higher risk of 

fouling from sources which until recently have not been 

economical to process. Mechanisms of crude oil fouling 

in turn are complicated and include many parameters 

with poorly understood interactions. An accurate and 

reliable estimation of fouling propensity is based on 

measurements from the experimental studies or field 

operation. The experimental results can, nonetheless, 

be noisy or sparse to some extent for various reasons. 

For instance, faulty sampling of temperature sensors 

during the experiments, or formation of fouling layer on 

the temperature probe which results in fluctuations of 

different magnitudes. Other examples include changes 

in the feed composition or operating conditions such as 

crude velocity or temperature.  

One viable option to deal with such problems is to 

use non-parametric tools i.e. neural networks, Kalman 

filters which have the capability of learning complex 

processes much faster and more accurately. They are 

based on continuously updated exchanger functioning 

modes and detective monitoring tools of when the 

deposition would occur. In the past few years, in 

particular, there have been further advancements in 

approximation tools that have facilitated the 

interpretation of highly non-linear and time-dependent 

data with more reliability.  

        The Kalman filter is an optimal recursive data 

processing algorithm [1, 2, 3]. It incorporates process 

parameters regardless of their uncertainties to estimate 

the current state of interest i.e. fouling resistance. The 

possible information which can be fed to the model are 

the mathematical process and measurement models, the 

uncertainties of the mathematical process and 

measurement model, and the initial conditions of the 

variables of interest, i.e. fouling resistance and its first 

and second order gradients with respect to time. The 

advantages of the Kalman filter over other filtering 

methods are that it: 

- uses both mathematical process model and

measurement to estimate the fouling resistance

(state of the system) where other methods just use

the measurements and estimates the process states.

- is able to consider the uncertainties of the

mathematical process model and measurements in

its estimations.

- predicts of fouling trend for multi-step ahead. See

the additional text

The Kalman filter can be employed for estimating 

the crude oil fouling for a wide range of operating 

conditions under various scenarios regarding to the 

characteristics of the fouling resistance data. These 

include experimental data which are noisy, sparse, with 

short or long fouling time exposures which may follow 

a linear or asymptotic trend with or without fouling 

induction period. The Kalman filter provides an option to 

estimate the fouling resistance of crude oil preheat trains 

under the mentioned conditions.  
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THE KALMAN FILTER 

Consider a nonlinear discrete-time system as represented 

in Eq. (1). A time discrete equation is a formula for 

computing the process state (e.g. fouling resistance) at any 

time step which is based on its values at previous time step. 

The vector of process states, 𝐱 ∈ ℜn, can in fact be any of

dependent variables of the process and their derivations as: 

𝐱k+1 = 𝐀k 𝐱k + 𝐁k 𝐮k + 𝛚k Eq. (1)

where 𝐱k is a n × 1 system state matrix at tk. Here n is the

number of states at tk. i.e. Rf ,Ṙf ,R̈f and 𝐀k is the n × n 
matrix of state transition at time tk, a matrix whose product

with the state matrix at previous time step gives the state 

value at the latter time steps. 𝐁k is a n × l input transition

matrix at time tk, and 𝐮k is an optional input matrix of l × 1 
which includes the operating conditions of the heat 

exchanger and could be zero, constant or variable with 

respect to tk−1. In Eq. (1), 𝛚k is a n-dimensional vector of

the process noise with a process noise covariance of 𝐐k at tk.

The initial process states, 𝐱0, is a vector with a known mean

value for each of its elements. The expected value of a 

variable is usually its mean value at that time step, 𝔼[𝐱0] =
𝛍0 with the covariance 𝐏0 =  𝔼[(𝐱0 − 𝛍0)(𝐱0 − 𝛍0)T]. The

𝔼 sign denotes the expected value of the process state vector, 

𝐱k.

The measurement vector, 𝐲 ∈ ℜm, can be written as:

𝐲k = 𝐇k 𝐱k + 𝛝k Eq. (2)

where 𝐇k is a m × n matrix of ideal connection between the

measurement and the state matrix at tk (m is the number of

measurement data points) and 𝛝k is a m-dimensional vector

of measurement noise with measurement noise covariance of 

𝐑k at tk. A direct connection matrix between the

measurement and state matrices is made through a 

conversion matrix, 𝐇k, whenever no additional gain or offset

is needed, it is then called the ideal connection matrix. 

The vector of process states, 𝐱k = (x1k, … , xnk) is n-

dimensional and in this study, the vector of process state, is 

including of the fouling resistance, its first and second order 

gradients with respect to time. However, the first derivation 

of fouling resistance has not to be misinterpreted with the 

initial fouling rate that can be estimated by many available 

correlations like as Ebert and Panchal [4, 5] or the modified 

one by Polley et al. [6]. The vector of measurements, 𝐲k =
(y1k, … , ymk) is m-dimensional and includes fouling

resistances. The process and measurement noise vectors, 𝛚k

and 𝛝k, are white with a Gaussian distribution and have

known or unknown covariances.  

The process and measurement noise vectors are assumed 

to be independent of each other. The white noise is a random 

signal with a flat (constant) power spectral density. The value 

of such noise can be estimated using a probability function 

with a constant or variable value for a set of samples thus: 

𝔼[𝛚k] = 0
𝔼[𝛚k𝛚j

T] = 0 for k ≠ j
Eq. (3) 

𝔼[𝛚k𝛚j
T] = 𝐐k for k = j

𝔼[𝛚k𝐱0
T] = 0 for all k

𝔼[𝛝k] = 0
𝔼[𝛝k𝛝j

T] = 0 for k ≠ j 

Eq. (4) 𝔼[𝛝k𝛝j
T] = 𝐑k for k = j 

𝔼[𝛝k𝐱0
T] = 0 for all k

A priori estimate gives the knowledge of the process 

states (𝐱k) prior to step k and can be denoted as 𝐱̂k
− ∈ ℜn,

and  𝐱̂k
+ ∈ ℜn is the a posteriori state estimation at step k

which includes the effect of measurement, 𝐲k (consider the

hat symbol (^) for estimations, the minus sign (–) for a priori 

estimations, and the positive sign (+) for a posteriori 

estimations). Thus, a priori and a posteriori errors of 

estimation can be defined as: 

𝐞k
− = 𝐱k − 𝐱̂k

− Eq. (5)

𝐞k
+ = 𝐱k − 𝐱̂k

+ Eq. (6)

Consequently, the a priori and a posteriori estimation 

error covariance are: 

𝐏k
− = 𝔼[𝐞k

−𝐞k
−T ] Eq. (7)

𝐏k
+ = 𝔼 [𝐞k

+ 𝐞k
+T

 ] Eq. (8)

The a posteriori state estimation 𝐱̂k
+ can be calculated as

a linear combination of an a priori estimation 𝐱̂k
− and a

weightened difference between an actual measurement 𝐲k

and measurement which may be calculated by a priori 

estimations, 𝐇k𝐱̂k
− as:

𝐱̂k
+ = 𝐱̂k

− + 𝐊k(𝐲k − 𝐇k 𝐱̂k
− ) Eq. (9)

The difference (𝐲k − 𝐇k 𝐱̂k
− ) is called the measurement

innovation or residual. It principally shows the difference 

between the predicted measurements, 𝐇k 𝐱̂k
−  and actual

measurements, 𝐲k.The blending factor in Eq. (9), 𝐊k, which

minimizes the a posteriori estimation error covariance is 

called the Kalman gain. By substitution of Eq. (9) into Eq. 

(6) and then setting the derivation of the 𝐏k
+ with respect to

𝐊k equal to zero and then solving for 𝐊k, the Kalman gain,

can then be obtained in following form: 

𝐊k =
𝐏k

−𝐇k
T

𝐇k𝐏k
−𝐇k

T + 𝐑k

Eq. (10)

Once the Kalman gain has minimized the a posteriori 

estimation error covariance then it can be utilized for 

updating the a priori estimation of the process states, 𝐱̂k
−. In

order to implement the Kalman filter, a series of equations 

has to be calculated. 

The initial guess for the process states (𝐱̂0
+) and the a

posteriori estimation error of process states (𝐏0
+) at t = 0 is

needed, then the recursive algorithm of Kalman filter for 

estimating process states proceeds as follows: 

1) Time update step (projecting the state and covariance

estimations forwards from last time step)
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1.1) Calculating the a priori state estimation using the 

mathematical process model. 

1.2) The a priori estimation leads to the computation of 

a priori estimation error covariance. 

2) Measurement update step (correcting the predictions

made in the current time step). 

2.1) Calculation of the Kalman gain. 

2.2) Calculation of the a posteriori state estimation and 

a posteriori error covariance. 

2.3) The results of the previous step (2.2) are then fed to 

step (1.1) for estimating the next state of the process 

(time update step). 

The a posteriori estimation of process states is expected 

to be more correct since the estimation error covariance was 

minimized and the effect of associated measurement is 

included in the estimations. The functionality of the Kalman 

filter can be boosted if a mathematical process model (like a 

fouling model) or even the propensity of the objective 

parameter is available. The latter can be obtained from the 

field experience or experimental data, for instance if the 

fouling resistance proceeds linearly, exponentially or 

asymptotically with time. The Kalman filter can also advance 

without such information but it then exclusively relies on the 

statistical analysis of noisy and sparse experimental results. 

After each time and measurement update step, the 

process is repeated with the use of a posteriori estimations to 

predict the new a priori estimations. In the mentioned 

procedure, the predictions are just made for one step ahead 

as the width of the prediction step is set to one and the 

predictions at k + 1 are depending to the estimations at time 

step k. If the width of the prediction step was set to k + N, 

then multiple step ahead prediction of the process states 

could be achieved. In this study, the performance of Kalman 

filter with one-step ahead predictions were investigated 

THE MATHEMATICAL PROCESS MODEL 

The Kalman filter depends on the accuracy of the 

mathematical process and the measurement models. In the 

absence of any mathematical process model, instead the field 

experience can be used which represents the propensity of 

fouling. In the simplest scenario, this could only be the trend 

for the objective function (i.e. fouling resistance), whether it 

proceeds linearly, exponentially or else. The mathematical 

process model, in the simplest practise, is the Taylor series 

expansion of the non-linear model of fouling process at each 

time step. The mathematical process model is time discrete 

thus the trend of fouling resistance for the first state (i.e. 

fouling resistance) can be expressed by: 

Rfk+1 = Rfk
+

dRfk

dt
Δtk+1 Eq. (11)

where Δtk+1 = tk+1 − tk. 
Eq. (11) shows that the fouling resistance at time k is the 

summation of the one at time k  and its slope at time k 

multiplied by the width of the time step or simply a difference 

term which can be negative or positive. The first order 

gradient of fouling resistance with respect to time, dRfk
/dt,

is the derivation of the above equation with respect to time, 

and can be written by: 

Ṙfk+1
 = Ṙfk

+
dṘfk

dt
Δtk+1

Eq. (12)

Eq. (12) shows that the Ṙfk+1
 could also be written in the 

form of its Taylor expansion at tk. As Ṙfk
 changes with time,

a new term defined here which is called the second order 

gradient of fouling resistance with respect to time, d2Rfk
/dt2

and can be expressed as:  

R̈fk+1
 = R̈fk

+
dR̈fk

dt
Δtk+1

Eq. (13)

Finally, the mathematical process model of the fouling 

process can be written in the state form as: 

𝐑fk+1
 = (

Rf

Ṙf

R̈f

)

k

= (
1 Δt 0
0 1 Δt
0 0 1

)

k

(

Rf

Ṙf

R̈f

)

k

Eq. 

(14)

It assumes that the trend of fouling resistance proceeds 

asymptotically in the form of Rfk+1
=  Rf,∞(1 −

exp(−tk+1/τ)).
It should be pointed out that the first and second order 

gradients of fouling resistance are not independent of the 

initial fouling resistance (Rf,t=0). It is though possible that the

initial guess for these two values deviates much from the real 

values. That would, in turn, leads to the deviation of 

estimations from measurements for the next time step. 

Having said that though the adaptive method takes these 

deviations into consideration and updates the Kalman gain 

for the next time step (a new Kalman gain based on the 

sequence of innovations). Thus the next estimations are 

always being updated with statistical information on 

deviation of estimations from measurements leading to 

reliable estimation of fouling resistance. 

THE MEASUREMENT MODEL 

The measurement vector includes the measured fouling 

resistances at tk and since there is no measurement of the first

and second order gradients of fouling resistance, the two 

other corresponding elements will be excluded from the 

measurement model and thus the measurement model in the 

state form is: 

𝐑f,meask
 = (1 0 0) (

Rf

Ṙf

R̈f

)

k

Eq. (15)

INITIAL CONDITIONS 

The heat exchanger is assumed to be initially clean and 

thus the fouling resistance at t = 0 is set to zero. Kalman 

filter, for the developed model, also considers similar 

propensity i.e. the fouling resistance at time zero is equal to 

zero. Accordingly, the estimation error covariance at t = 0 is 

zero. The process and measurement noise covariance have to 

be selected properly. Nevertheless, if the initial process states 

are unknown, these states can be substituted by random 

values. A better guess of process and measurement noise 
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covariance, 𝐐k and 𝐑k, results in better estimations in the

first time steps, however, as the new observations arrive, the 

filter updates these coefficients and produces related 

estimations. 

THE EXPERIMENTAL DATA 

Six sets of experimental data with asymptotic behaviour 

were selected. The experiments are divided into two main 

categories, where the first set includes the experiments that 

the formation of deposit layer starts immediately while in the 

second set, it builds up after an induction period. The 

sampling interval for each experiment is also considered in 

the model which varied between 2-3 minutes. The inlet 

velocity changes from 0.98 to 3.3 m/s and the inlet 

temperature varies from 94 to 360°C where the surface 

temperature changes from 248 to 340°C.  

The experimental data are normalized by dividing them 

to the maximum measured fouling resistance in each 

experiment. Normalization enables the qualitative 

comparison of various experimental results to each other as 

the objective function varied from zero to one regardless of 

initial order of magnitude of the fouling resistance. The 

elapsed time for each estimation step is small(< 0.01 ms).  

IMPACT OF KALMAN GAIN AND PROCESS AND 

MEASUREMENT NOISE COVARIANCE  

The consistency of the model is closely related to the 

selection of a proper Kalman gain, which depends on the 

process and measurement noise covariance. The Kalman gain 

has a direct impact on the a posteriori estimation of fouling 

resistance (see Eq. (9)). When the measurement noise 

covariance 𝐑k reaches zero, thus the Kalman gain weights

the measurement residual as: 

lim
𝐑k→0

𝐊k = lim
𝐑k→0

𝐏k
−𝐇k

T

𝐇k𝐏k
−𝐇k

T + 𝐑k

=
1

𝐇k

Eq. (16)

Considering Eq. (10) again reveals when the a priori 

estimation error covariance approaches zero (𝐏k
−) (process

noise covaraince (𝐐k) goes to zero), thus the Kalman gain

will be zero, which leads to weight the measurement residual 

(𝐇k 𝐱̂k
−) less extensively as:

lim
𝐏k

−→0
𝐊k = lim

𝐏k
−→0

𝐏k
−𝐇k

T

𝐇k𝐏k
−𝐇k

T + 𝐑k

= 0 Eq. (17)

Whenever the measurement noise covariance reaches 

zero, then, the actual measurement (𝐲k) is trusted more and

the predicted measurement (𝐇k 𝐱̂k
−) is trusted less. As the a

priori estimation error covariance (𝐏k
−) reaches zero, the

measurements will be neglected and the predicted 

measurement is trusted more. 

INFLUENCE OF INITIAL GUESS OF THE FILTER 

COEFFICIENTS 

The developed model is based on several assumptions; 

hence, it deviates to some extent from the real measurements. 

Thus, the selection of incorrect process and measurement 

coefficients will lead to deterioration of the performance of 

the Kalman filter for the initial time steps. It was explained 

in previous section that both process and measurement noise 

covariance (𝐐k and 𝐑k) have a simultaneous effect on the a

posteriori estimations. However, due to the adaptive 

character of the filter, these coefficients will be corrected in 

each step and finally produce optimal estimations based on 

new measurements.  

In this study, the initial value of measurement noise 

covariance was set to values near zero and therefore more 

weights were given to measurements for the initial time steps. 

The initial value of the process noise covariance was set to 

be larger in comparison to the measurement noise covariance 

and therefore the predicted measurements were neglected in 

the primary time steps. If process prior knowledge and 

measurement noise covariance are available then they would 

help to have a better estimation of the process states in the 

first time steps. 

ESTIMATION OF PROCESS AND MEASUREMENT 

NOISE COVARIANCE 

The appropriate estimation of process and measurement 

noise covariance at each time step is a challenge. To do so, 

the first choice is to consider constant values for these 

parameters based on prior knowledge or by trial and error. 

Neither of these approaches though would be considered as 

efficient as it is time consuming to find the optimal values or 

it may need an excessive prior knowledge to estimate them 

in each time step. Furthermore the process and measurement 

noise covariance are not constant for all experiments and 

have to be defined for each run separately.  

The other option to estimate the process and 

measurement noise covariance is to compare the elements of 

measurement vector with their estimated values and calculate 

the process and measurement noise covariance based on this 

knowledge [7]. The estimated residual, 𝛖𝐤
+, is the difference

between the measurements and their a posteriori estimated 

values, and can be expressed by: 

𝛖k
+ = 𝐲k − 𝐇k𝐱̂k

+ Eq. (18)

Then the measurement noise covariance can be obtained 

by adding an average of last M estimated residuals to the 

projected measurement noise covariance as: 

𝐑k = 
1

M
∑ 𝛖k−i

+ 𝛖k−i
+ T

M

i=1

+ 𝐇k𝐏k
+𝐇k

T Eq. (19)

Analogous to adaptive estimation of measurement noise 

covariance using estimated innovation sequences, 𝐑k , the

process noise covariance matrix, 𝐐k can be adapted based on

the estimated innovation sequences as [8]: 

𝐐k = 𝐊k (
1

M
∑ 𝛖k−i

+ 𝛖k−i
+ T

M

i=1

) 𝐊k
T Eq. (20)
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The larger number of samples makes the filter to become 

more robust as it incorporates more data into the model. The 

model is finally capable of handling any type of the fouling 

resistance trend which could be linear, asymptotic with or 

without induction time. The number of samples can be kept 

constant or increases by new measurements in each time step. 

The problem of such method is how to handle the first M-

samples. In this paper, to overcome this problem, M was 

initially set to 1 and then increased until it reached 50. Then, 

the number of samples was kept constant. Thus any change 

in the trend of fouling resistance can be observed in the 

estimations and sudden fluctuation/oscillation of each data 

point would be compensated by the averaged process and 

measurement noise covariance. 

RESULTS AND DISCUSSION 

The simulation results are presented in Figure 1 to Figure 

6. The selected experimental data are too noisy and the

deposit layer in experiments No.1 to No.3 is built up

immediately as soon as the experiment was started. In

experiments No.4 to No. 6, though the trends of fouling

resistance included an induction time, after which it follows

an asymptotic behaviour. In Figure 5 and Figure 6, the trends

of fouling resistance experienced negative values of fouling

resistance. The developed model of fouling resistance does

not contain any term for induction time and it is not capable

to estimate any negative values. This introduces an additional

source of uncertainty which make any mathematical process

model to fail, but the developed model by calculating the

process and measurement noise covariance adaptively based

on estimated residuals.

Figure 1- Simulation results for experiment No.1 

Figure 2- Simulation results for experiment No.2 

In Figure 1 and Figure 3, the experimental data are too 

noisy. As a result, the estimations of fouling resistance 

initially is bound to some oscillations which are disappeared 

later and the estimations continue to reach an asymptotic 

value. In Figure 2, the trend of fouling resistance shows an 

asymptotic behaviour with some sudden reductions at t =
0.65 and t = 0.85. The developed model considers the wide 

ranging changes of the experimental measurements into the 

estimations as the estimations are based on M previous 

samples. The filter finds an optimal estimation of fouling 

resistance out of the measurements which are noisy and 

include fluctuations in each time step. In Figure 4, the 

experimental measurements show a dented shape for the first 

half of the experiments where it then continues linearly. The 

results show that the Kalman filter is capable of handling 

different trends of fouling resistance. This is due to 

adaptively selection of process and measurement noise 

covariance. 

Figure 3- Simulation results for experiment No.3 

Wide range reduction of 

measurements. 

Initial oscillation of estimations 

which are disappeared after a 

number of estimations.

Initial noisy data makes the 

filter to have oscillation in 

first M samples. 
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Figure 4- Simulation results for experiment No.4 

In Figure 5, the trend of fouling resistance experienced 

an induction period where the measurements oscillates 

around zero value and then continues to reach an asymptotic 

value. The filter estimates the fouling trend both qualitatively 

and quantitatively. In the last simulation, Figure 6, the 

measurements start from negative values. A negative fouling 

resistance shows that the heat transfer is increased which may 

be due to higher heat transfer rate as a result of induced 

turbulence by initial deposition of foulant onto the heat 

transfer surface. However, as the deposit layer builds up on 

the heat transfer surface, it decreases the heat transfer and 

finally it reaches positive values. In the initial steps of this 

experiment, a sharp jump can be seen. This is caused as the 

mathematical process model attempts to make estimation 

with positive values, although the measurements are 

negative. After some measurements the filter coefficients are 

adapted in a way to weight the measurements more heavily 

than to trust the process model. Although the fact that the 

filter is designed to trust the measurements in the initial steps, 

the estimation with negative fouling resistance was out of 

filter’s capability. In contrast to the initial mathematical 

process model, the filter follows the changes of negative 

fouling resistance. 

Figure 5- Simulation results for experiment No.5 

Figure 6- Simulation results for experiment No.6 

For all the experiments although the experimental data 

are too noisy, the estimated trends are almost smooth. The 

estimations deviate considerably from measurements in the 

first steps for all simulations which disappear after a short 

time. This is due to stable calculation of filter coefficients due 

to adaptive calculation of the process and measurement noise 

covariance. 

The best estimation of fouling resistance facilitates the 

determination of heat exchanger performance. This, in turn, 

technically means that the identified status of the heat 

exchanger in the upcoming steps helps to control the 

operating conditions in a way to avoid the critical conditions 

which would cause the exchanger to foul. These include 

malfunctioning and deteriorating the heat exchanger 

performance. The filter may also help to decide 

implementing an appropriate cleaning procedure without the 

need to interrupt the heat exchanger. 

CONCLUSIONS 

       The utilization of the Kalman filter helps to analyse and 

model the experiments with noisy measurements. It can 

potentially serve as a tool to scrutinize the influence of each 

parameter on the deposit formation. The Kalman filter helped 

to minimize the error of estimation by considering the 

process and measurement noise covariance and the selection 

of process and measurement noise covariance can be adapted 

based on the estimated residuals based on the measurements. 

NOMENCLATURE 

Latin symbols 

𝐀 a n × n state transition matrix  

𝐁 a n × l input transition matrix  

𝔼 denotes the expected value of a parameter 

e error of estimation 

𝐇 a m × n matrix of ideal connection between the 

measurements and the state variables at tk

𝐈 a n × n unit matrix 

𝐊 Kalman gain 

𝐏 estimation error covariance 

𝐐 process noise covariance 

Extra noisy data in the 

initial time steps force the 

estimations to oscillate.   

The filter becomes steady 

and the estimations are 

smooth. 

Dented fouling 

resistance trend.

Noisy and some negative measurements make 

the filter to have sudden oscillations in the first 

estimations.
  

Negative measurements made the filter to have 

sudden oscillation in the first estimations as the 

process model tries to estimate positive values 

for the fouling resistance however, the filter is 

going to negative values by considering a wide 

range of negative experimental data. 
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𝐑 measurement noise covariance 

𝐑f the state vector for a priori estimation of Rf , Ṙf and

R̈f at each time step 

Rf Fouling resistance, [
𝑚2𝐾

𝑊
] 

Ṙf First order gradient of fouling resistance w.r.t. time, 

[
𝑚2𝐾

𝑊 𝑠
] 

R̈f Second order gradient of fouling resistance w.r.t. time, 

[
𝑚2𝐾

𝑊 𝑠2] 

t time, [−] 
𝐮 a l × 1 optional input vector to control the heat 

exchanger and could be constant or varying at tk, it can

be omitted 

𝐱 a n × 1 process state vector at tk (n is the number of

process states at tk  such x, dx/dt, d2x/dt2

derivations) 

𝐲 measurement vector 

∞ to show the asymptotic fouling resistance 

ℜ domain of real numbers 

Greek symbols 

Δ difference 

𝛍 mean value of a parameter 

𝛕 fouling time constant 

𝛖 estimated residual 

𝛚 a n × 1 noise of mathematical process model with a 

covariance of 𝐐k at tk with normal probability

distribution 𝑝(𝛚k) ~𝒩(0, 𝐐k)
𝛝 a m × 1 vector of measurement noise 

with measurement noise covariance of 𝐑k at tk with

normal probability distribution 𝑝(𝛝k) ~𝒩(0, 𝐑k)

Superscripts 

̂ the state estimation 

– the minus sign for indicating the a priori estimation

+ the positive sign for indicating the a posteriori

estimation

Subscripts 

est estimated data point 

f fouling 

k point of time 

meas measured data point 
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