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ABSTRACT 

Fouling in refinery (and other) applications is a 

major issue affecting process efficiency and 

profitability. Many models are available that aim to 

quantify its effects on individual exchangers and 

whole networks, and the benefits of fouling 

mitigation techniques. A key question is how much 

model detail is required versus intended use, 

predictive accuracy, data requirement, and 

computational feasibility. This paper compares two 

dynamic thermo-hydraulic models for heat 

exchanger networks under fouling: a high fidelity 

model (A) suitable for simulations, and a simpler, 

model (B) suitable for optimisation. It identifies 

conditions and applications where the two models 

are broadly equivalent, presents a parameter 

estimation scheme to match them, and a validation 

methodology. A detailed comparison between the 

models is made for 37 exchangers in 8 networks. 

Results show that the simpler model (with 

parameters suitably fitted as indicated) can 

approximate well the high fidelity model for 

relatively long periods. The simpler model B is then 

successfully used to simultaneously optimize 

cleaning schedule and flow distribution of a pre heat 

train. This solution is validated against model A,  

with a difference in predicted operational cost of 

1.4% over 1 year. Results indicate that the simpler 

model and fitting procedure approximate closely the 

high fidelity model over relatively long periods, and 

can be confidently used in a nonlinear model 

predictive control (NMPC) strategy. 

INTRODUCTION 

Fouling in the preheat train of crude distillation 

units (CDU) reduces the thermal and hydraulic 

performance of the process, and increases 

operational cost and environmental impact. 

Choosing the right mitigation technique is 

challenging due to many possible alternatives, 

complex trade-offs , and difficulty in quantifying 

future performance and benefits [1]. Suitable 

models, able to predict and quantify the effects of 

fouling in the preheat train, are therefore essential. 

Operational mitigation techniques (cleaning the 

units and control of flow distribution in the network) 

improve operations without major design 

intervention and large capital investment. 

Mathematically, this requires solving dynamic 

optimization problems with integer variables, to 

minimize the total operating cost of the network 

over a specified horizon [1], [2]. Computationally, 

these are very demanding problems. Clearly, the 

effectiveness of a solution depends on the accuracy 

of the underlying models, many of which have been 

proposed. Some use linearised heat exchanger 

models [3], [4], others consider simple fouling 

models (e.g. linear fouling, constant fouling) [5]–

[7]. Details of exchanger geometry, fluid and deposit 

thermo-physical properties, and interactions 

between units in the network are often ignored or 

highly approximated. Such simplifications make the 

optimization problem computationally easier to 

solve, but compromise the quality of the results. 

With more detailed thermo-hydraulic models, the 

optimization is compromised, having to rely on 

heuristic or stochastic methods with poor ability to 

deal with constraints and no guarantee of 

convergence to an optimum point (e.g. [8]).   

A key question is how much model detail is 

required for an intended use, in terms of predictive 

accuracy, data requirement and computational 

feasibility. Intended uses may be exchanger and 

exchanger network design and, in operations, 

monitoring of fouling extent, diagnosis of abnormal 

events such as inorganics breakthrough, flow rate 

control, and planning and scheduling of cleanings. 

So far, most of these have been addressed using 

distinct models, ranging from very simple, Rf-based 

to CFD models (for a good discussion, see [9]). A 

trade-off is clearly necessary between tractable 

models suitable for optimization, and more accurate 

models which are too large and complex for this. 

In this paper, the intended model use is the 

optimization of flow control and cleaning schedules, 

which have been shown to be highly synergistic 

[10]. Two thermo-hydraulic heat exchanger models 

are compared: Model A, a high fidelity, 2D-
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distributed (axially and radially) dynamic model, 

and model B, a much simpler 1D, radially 

distributed but axially lumped dynamic model. The 

aim is to determine whether, to which extent and 

under which conditions model B can approximate 

model A in predicting the effects of fouling. An 

application of approximate but tractable models is 

online optimization within a nonlinear model 

predictive control strategy for fouling mitigation.  

In the following, first some details of the two 

models (A and B) are given, with a comparison of 

their key features. Then, a scheme is presented for 

fitting the simpler model B to the high fidelity model 

A, which is taken as reference. The errors achieved 

in the estimation step, and in a subsequent prediction 

step using the simpler model are analyzed for 37 

exchangers in 8 networks. Finally, a network 

optimization is carried out with model B and the 

results checked against the high fidelity model, 

showing that a very good approximation is achieved. 

Key conclusions are summarized in the last section. 

HEAT EXCHANGER, NETWORK AND 

FOULING RATE MODELS 

Although the following approach is general, 

only tube and shell heat exchangers are considered 

here, due to their large presence in the oil industry. 

A preheat train model must include individual 

exchangers and how they are connected in a 

network. A heat exchanger network is defined as a 

multigraph that describes the nodes, the connections 

between them, and the direction of flow among the 

nodes for different streams. Nodes are classified as 

sources (𝑆𝑜), sinks (𝑆𝑖), flow splitters (𝑆𝑝), flow 

mixers (𝑀𝑥), and exchangers (𝐻𝐸𝑋). Each stream 

defines a unique graph which  connects some nodes. 

Only in the exchanger nodes two streams interact via 

heat transfer. Fig 1 shows a network example 

defining all the nodes, and a furnace.  The latter 

performance is modelled simply, by defining the 

coil inlet temperature (CIT), the coil outlet 

temperature (COT), throughput, and furnace duty. A 

network is defined by the following sets: 

• 𝑁𝑜𝑑𝑒𝑠 = 𝐻𝐸𝑋 ∪ 𝑆𝑝 ∪ 𝑀𝑥 ∪ 𝑆𝑜 ∪ 𝑆𝑖. Set 

of all the nodes in the network. 

• 𝑆𝑡𝑟𝑒𝑎𝑚 𝑡𝑦𝑝𝑒𝑠 = {1,2, … , 𝑛𝑠𝑡}. Set of all 

the fluids in the network. 

• 𝐴𝑟𝑐𝑠 = {(𝑖, 𝑗, 𝑘)|∃(𝑖, 𝑗, 𝑘) ∈ 𝑁𝑜𝑑𝑒𝑠 ×
𝑁𝑜𝑑𝑒𝑠 × 𝑆𝑡𝑟𝑒𝑎𝑚 𝑡𝑦𝑝𝑒𝑠}. Set of arcs that 

defines the connection between nodes for a 

given fluid. 

• 𝑇𝑖𝑚𝑒 = {1,2, … , 𝑛𝑇}. Set of discrete points 

in time. 

Each element in the set 𝑆𝑡𝑟𝑒𝑎𝑚 𝑡𝑦𝑝𝑒𝑠 is a fluid 

in the network (e.g. crude oil, naphtha). The set 𝐴𝑟𝑐 

represents a connection between two nodes 

including the fluid that connects them. Finally, the 

set 𝑇𝑖𝑚𝑒 is not a physical entity, but is included 

because dynamic processes may be defined 

differently in different solution algorithms. The 

source nodes define the inlet flow rates and inlet 

temperature of a specific stream at every time. Each 

heat exchanger node is defined by the corresponding 

heat and mass transfer, fouling and deposit models 

(depending on model type). Here, network 

configuration and exchangers design are fixed.  

 
Fig 1. Heat exchanger network representation 

Given all inputs to the network (inlet streams 

temperature, flowrate and enthalpy), stream physical 

properties models (e.g. for density, heat capacity), 

and exchanger geometries, the aim is to predict the 

performance (in term of outlet streams temperature, 

duty and pressure drop in each node and for the 

network overall) under varying operating 

conditions, including fouling.  

The models for an individual heat exchanger 

and fouling are discussed in more detail in the 

following, but the network model is invariant for any 

changes in the fouling or exchanger models. 

Fouling rate model 

Crude oil fouling is a complex process in which 

many fouling mechanisms take place [11]. A semi-

empirical approach has traditionally been favored 

[12] because these models are easy to implement 

and understand, and are claimed to capture the main 

effects of operating variables on the fouling rate. 

Most semi-empirical models in the literature state 

that the fouling rate is a function of two competing 

phenomena: a deposition rate, and a removal (or 

suppression) rate. Under certain conditions these 

balance out, defining a fouling threshold level. 

Fouling rate is also traditionally (and incorrectly, see 

[13]) equated with fouling resistance. For example, 

the Ebert-Panchal (EP) model, in the form of Eq. 1, 

has been widely used in crude oil applications [12], 

[14]. It defines fouling rate as a function of the 

Prandtl and Reynold number (reflecting the effects 

of fluid properties and operating conditions of the 

exchanger), and an Arrhenius term (reflecting the 

chemical reaction nature of crude oil fouling) [15], 

[16]. The removal (suppression) term is proportional 

to the shear rate, hence velocity in the tubes. 

𝑑𝑅𝑓

𝑑𝑡
= 𝛼𝑅𝑒−0.66𝑃𝑟−0.33 exp (−

𝐸𝑓

𝑅𝑇𝑓

) − 𝛾𝜏 
(1) 

By assuming constant thermal conductivity and 

uniform composition of the deposit, its thickness 
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(hence the hydraulic performance of an exchanger) 

can be calculated. The EP model has three tuning 

parameters: the deposition constant, 𝛼, the removal 

constant, 𝛾, and the activation energy, 𝐸𝑓, which 

must be determined from plant or experimental data. 

Assuming that the same set of parameters apply to 

many exchangers in the same network  simplifies the 

parameter estimation problem by reducing the 

number of variables [5], [17]. However, there is no 

reason to assume this. Allowing different fouling 

parameter for each exchanger in the network can 

improve the overall prediction capabilities of the 

model, although it means solving a parameter 

estimation problem with more variables. 

Here, we use the Ebert-Panchal model to 

represent deposition rate locally (model A) or, in the 

form of (Eq. 1), overall fouling resistance (model B).  

Heat exchanger model  

Given as inputs: the flow rates of the tube and 

shell side, the temperature of the hot and cold 

streams, the physical properties of the fluids, and the 

geometry specification of the exchangers, a heat 

exchanger model (coupled with a fouling model) 

must be able to predict: i) the outlet stream 

temperature of the fluids on the tube and shell side; 

ii) the heat transferred from the hot stream to the 

cold stream and iii) the pressure drops on the tube 

and/or the shell side. 

Here we focus on two models: (A) a high 

fidelity, 2D dynamic model, and (B) a much simpler 

1D dynamic model. Both models use the same input 

information described above and are able to predict 

the main operating variables of the exchanger. The 

key difference is in the level of detail with which 

they account for the geometry of the exchanger. This 

has significant implications on model complexity, 

ease of solution, and prediction capabilities. 

Model A: this 2D distributed dynamic model 

[18], [19] includes a detailed description of the 

energy balances and hydraulic effects. These are 

defined by a set of algebraic and partial differential 

equations along both the axial and radial directions 

(hence, 2D distributed), for shell and tube 

exchangers. Differential equations are discretized 

and solved using a state of the art numerical 

integrator. Details are found in [18], [19]. 

This model considers four domains (tube side 

per pass, shell side, tube wall, and deposit), linked 

by boundary and continuity conditions. A tube side 

domain is associated to each pass of the exchanger, 

with a single tube representing the whole bundle. On 

the shell side domain, the heat flux from all passes 

is included in the differential energy balance. In the 

wall and deposit domains the energy balance is 

solved in the radial direction. The deposit domain 

has a moving boundary layer (handled using a 

Lagrangean transformation [18], [19]), as the 

thickness of the deposit changes with time and with 

the axial position in the exchanger. Each point in the 

deposit (radially and axially) is characterized by its 

own thermal conductivity, which changes over time 

reflecting operation history. This high fidelity model 

has demonstrated excellent ability to predict plant 

measurements and performance in many 

applications, for single exchangers and large 

networks. It has been validated against refinery data 

[18], [20], [21], and used for monitoring, diagnostic 

and retrofit of industrial networks [9], [22], [23]. 

Simulations are performed in reasonable 

computational time, however its large size hinders 

its application to optimisation. 

Model B: this simpler radially-distributed but 

axially-lumped parameter exchanger model (hence, 

1D-distributed) considers the overall effect of the 

exchanger inputs on the outputs, without much 

detail for the heat transfer inside the unit. It is based 

on the P-NTU model [24] and the definition of the P 

efficiency (the actual heat transfer in the exchanger 

with respect to the maximum possible heat transfer), 

which is related to the number of transfer units and 

the exchanger geometry. The time evolution of the 

system is given by the fouling/agein model, and at 

every time a steady state algebraic model for the 

exchangers determines the outlet streams 

temperature and pressure. 

Model B considers the deposit thickness (hence 

pressure drop) based on the fouling resistance, 

accounting for curvature effects on heat transfer in 

the radial direction (Eq. 2). Notably, Eq. 2 

overcomes the usual thin layer assumption of similar 

models (e.g. [25]).  

𝛿 =
𝑑𝑖

2
[1 − exp (−

𝜆𝑑𝑅𝑓

𝑑𝑜 2⁄
)] 

(2) 

Although models (A) and (B) have similar 

inputs and can predict the same outputs for each 

exchanger, their level of detail and mathematical 

complexity are significantly different, and their 

applicability may also be different. Table 1 shows a 

qualitative comparison of the two models in terms 

of number of equations after discretization. For both 

models, the time domain is discretized using 

orthogonal collocation in finite elements [26]. 

Model A uses finite differences in others domains.  

The intended application here is the 

optimization of flow rate distribution and cleaning 

schedule over long horizons. For flow control, the 

decision variables (flowrates) are continuous. For 

the cleaning scheduling it is necessary to introduce 

binary decision variables (to clean or not) at each 

time of interest, for each exchanger. The number of 

binary variables increases rapidly with problem size. 

They are the hardest to tackle in an optimization 

problem, and should be reduced to a minimum. For 

the optimal cleaning scheduling formulation, they 

also introduce disjunctions (logical OR, e.g. a unit is 

either in operation or being cleaned). Their 

complexity is directly related to the size and 
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characteristics of the model. A large model means a 

more difficult optimization problem to solve (a 

comprehensive complexity analysis is given in 

[27]). From Table 1 the size of the high fidelity 

model A can be well over ten times that of model B. 

It has therefore a very large disadvantage with 

respect to model B.

 

Table 1. Model comparison and estimation of the number of equations. 
 Lumped parameter model Distributed model 

Algebraic (A) 

or differential 

(D) equation. 

Estimated number of 

equations after 

discretization*. 

Algebraic (A) or 

differential (D) 

equation. 

Estimated number of 

equations after 

discretization*. 

Mass balance A (2*NHEX)*NT A (2*NHEX)*NT 

Energy balance A (2*NHEX)*NT D (NHEX*NZ*NP*(2*NR+1))*NT 

Fouling model D (NHEX)*NT D (NHEX*NZ*NP *NR)*NT 

Deposit thickness A (NHEX)*NT D (NHEX*NZ*NP)*NT 

Heat transfer A (3*NHEX)*NT A (2*NHEX*NZ*NP)*NT 

Pressure drop A (NHEX)*NT D (NHEX*NZ*NP)*NT 

Total  (10*NHEX)*NT  NHEX*(2+NZ*NP*(5+2*NR))*NT 

*NHEX, number of heat exchangers in the networks (≥ 1). 

  NT, number of discretization points in time (≥ 2). 

  NZ, number of discretization points in the axial direction (≥ 5). 

  NR, number of discretization points in the radial direction (≥ 20). 

  NP, number of tube passes (≥ 1). 

 

PARAMETER ESTIMATION AND MODEL 

VALIDATION  

The prediction ability and accuracy of the 

models are compared for a collection of heat 

exchanger networks operating in different 

conditions. Model A is used as a reference 

benchmark as it was validated against many plant 

data, with reported error of +/- 2.0 K in outlet 

streams temperatures, and duty and tube side 

pressure drop within a 1.5% relative error [9], [18].  

 
Fig 2. Model validation strategy. 

The model validation process adopted, 

summarized in Fig 2, starts with the generation of 

operational data for each case study by running one 

or more scenarios with the high-fidelity model A. 

Model A had been previously fitted (i.e determining 

fouling parameters) and validated against real 

dynamic plant data collected from the refinery. Then 

simulated data for the same inputs are generated 

from model A (including soft-measured variables) 

and divided in two subsets: data in the estimation 

horizon (EH) are used for fitting parameters (𝛼, 𝐸𝑓. 

and 𝛾 in the EP model, plus deposit roughness) in 

model B, in a network-wide estimation; those in the 

prediction horizon (PH) are used for validating the 

prediction of model B against those of model A. The 

length of the estimation horizon (EH) may be varied. 

Fig 3 shows that model B uses a full set of 

temperature and pressure “measurements” produced 

using model A. In practice, this would include some 

pressures made available through model A as soft-

sensed variables. The fitting also considers the effect 

of complex interactions between units on the 

network. 

𝐦𝐢𝐧 𝑱 = ∑ ∑ 𝒘𝑻𝒕(𝑻𝒕,𝒊,𝒌 − �̂�𝒕,𝒊,𝒌)
𝟐

𝒊∈𝑯𝑬𝑿𝒌∈𝑵

+ 𝒘𝑻𝒔(𝑻𝒔,𝒊,𝒌 − �̂�𝒔,𝒊,𝒌)
𝟐

+ 𝒘𝚫𝑷(𝚫𝑷𝒊,𝒌 − 𝚫�̂�𝒊,𝒌)
𝟐

 

𝒔. 𝒕. 
𝑯𝒆𝒂𝒕 𝒆𝒙𝒄𝒉𝒂𝒏𝒈𝒆𝒓 𝒎𝒐𝒅𝒆𝒍 

𝐹𝑜𝑢𝑙𝑖𝑛𝑔 𝑚𝑜𝑑𝑒𝑙 
𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 
𝑀𝑎𝑠𝑠 𝑎𝑛𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠 
𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑑𝑟𝑜𝑝 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 

(3) 

The parameter estimation problem solved here 

(Eq. 3) minimises the square error of the difference 

in measurements (tube side outlet temperature, shell 

side outlet temperature,and tube side pressure drop) 

between models A and B. It determines optimally 

the fouling parameters and deposit roughness model 

B. The weights 𝑤 define the relative importance of 
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each objective. The optimization problem is subject 

to all equations of the model, including network 

connectivity, pressure drop, operational constraints 

(e.g. bounds on variables) and heat 

exchanger/fouling models, which are nonlinear 

equations. The size of this NLP optimization 

problem depends on the size of the network and on 

the number of available data points (i.e. length of 

EH) and sampling frequency. This estimation 

procedure is therefore quite different from, much 

richer than, and with superior results to, those 

typically used for fitting fouling parameters. In 

approaches that rely on the calculation of the fouling 

resistance (𝑅𝑓) (boxes at the bottom of Fig. 3) the 

noise and error of the primary measurements are 

amplified [5], [28] and only temperature 

measurements are used. Alternative methods 

(dashed line in Fig.3) cannot exploit the full set of 

pressure drop information made available by the soft 

sensors in model A [9].  In addition, here is possible 

to assess the quality of model B estimates (and 

predictions) against the high fidelity model. 

 
Fig 3. Model fitting and validation approached, from plant data to a representative model. 

This methodology is applied to eight networks 

taken from the literature, all at the hot end of preheat 

trains [9], [21], [22], [27]. The networks range from 

small (2 exchangers) to relative large ones with 9 

exchangers. The total of 37 heat exchangers cover a 

wide range of operating conditions and design 

specifications and provide a significant sample. In 

all the cases the overall operation time is set at 365 

days. Initial conditions are case dependent and some 

exchangers present an initial fouling resistance. The 

inlet conditions in all the cases are assumed constant 

(no changes in the flow rate or inlet temperatures). 

All cases are solved for the following EH: 360 days, 

270 days, 180 days, and 90 days (the PH is the 

balance to the end of the year). This allows checking 

the minimum information required to fit a model and 

prediction quality. 

Hexxcell studio [29] is used to simulate the 

operation of the networks using distributed model A 

and generate the data for fitting model B. The results 

are exported to Python, and the parameter estimation 

problem is solved in Pyomo 5.2 [30] using the solver 

IPOPT, an interior point algorithm for NLP 

problems. 

RESULTS AND DISCUSSION 

The results are divided in two groups. The first 

one presents the results of the parameter estimation 

problem, and compares the two models for all 

exchangers studied. The second one optimizes the 

operation a specific case study with model B, and 

validates the solution obtained against model A. 

Parameter estimation and model comparison 

The average absolute error between models A 

and B is calculated for the primary measured 

variables: outlet tube side temperature, outlet shell 

side temperature, and tube side pressure drop. Fig 4 

plots the errors for the estimation data set (EH error, 

for data within the model fitting horizon) and 

prediction data set (PH error, for data not included 

in the model fitting) for all 37 exchangers, for 

various estimation horizons, EH. The average 

estimation error between the two models is low 

(≤1.5 K for the tube side temperature, ≤ 2.0 K for 

the shell side temperature, and ≤ 0.15 bar for the 

pressure drop) and does not change significantly 

with the length of the estimation horizon. This 

indicates that the simpler model B is able to match 

well the high fidelity model A. The average 

prediction error is larger, particularly for short 

estimation horizons, however still quite acceptable. 

In isolated cases, an estimation horizon of 90 days 

leads to >5 K prediction errors in the shell side outlet 

temperature. Including too few data in the parameter 

estimation step may lead to wrong long term 
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predictions. In some case the large variation in 

prediction error is due to bad parameter estimates for 

the B model. In others, the estimation data are not 

sufficient to capture the network variability. 

Estimation horizons of ~180 days give good results. 

a) 

 
b) 

 
c) 

 
Fig 4. Average error for a) tube side outlet 

temperature, b) shell side outlet temperature, and c) 

tube side pressure drop in the estimation horizon 

(EH) and in the prediction horizon (PH). 

Fig 5 shows values of the estimated deposition 

constant parameter (𝛼) in each exchanger vs the 

estimation horizon. In some cases, as the estimation 

horizon decreases the value of 𝛼 increases (e.g. 

exchangers no. 10-15 in Fig 5). Although they give 

a good fit within the estimation horizon, these large 

values overestimate the effect of fouling for longer 

operating times causing erroneous predictions. In 

model A the same fouling parameters were used for 

all the exchangers in a network, in the simpler model 

B different values are estimated for each exchanger. 

This additional degrees of freedom enables model B 

to make equally good predictions when enough data 

is used to fit the parameters of the simpler model. 

 
Fig 5. Optimally determined deposition constant 

(𝛼) for each exchanger of all the cases studied 

varying the estimation horizon. 

Network optimization and validation 

The heat exchanger network of Fig 6 (taken 

from [9]) is considered here. After fitting the 

parameters as described above, model B is used to 

simultaneously optimize its cleaning schedule and 

flow distribution, over 365 days. Here, the objective 

function is the minimization of the total operating 

cost (fuel cost + CO2 emission cost + cleaning cost). 

Details of formulation and solution strategy are in 

[10], [27]. The optimal cleaning schedule for this 

network consist on cleaning E01A/B and E04 four 

times. In three occasions those three shells are 

cleaned simultaneously (at 30 days, 200 days, and 

290 days of operation). The other cleanings are at 

110 days for E4 and 120 days for E01A/B. The 

optimal flow split through the parallel branches, 

bounded between 30% and 70% for feasible 

operation, changes during the year (Fig 7) to 

enhance energy recovery when the units 

performance changes due to fouling and/or the 

cleanings. The optimal operation is then run with 

model A and the trajectories from the two models 

are compared. Fig 8 shows the CIT prediction for 

this optimal operation for the simpler model B, and 

the corresponding profiles when the same operation 

is run with the high fidelity model A. Both models 

follow very similar trends. The average error in CIT 

prediction between the two over 1 year is 0.31 K. 

Model B predicts an overall operation cost of $ 

13.7 M, while model A predicts $ 13.4 M, a 

difference of only 1.4%. Therefore, the operational 
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decisions, including choice of cleanings and flow 

distribution, made with the model B are taken to be 

valid 

 
Fig 6. Heat exchanger network structure used as an 

example in comparing the models (A) and (B). 

 
Fig 7. Optimal split fraction for the case study. 

 
Fig 8. Comparison of the CIT profile for the case 

study using the simple and high fidelity models. 

CONCLUSION 

Fouling mitigation in refinery applications is 

paramount to ensure a profitable, safe, and reliable 

operation. Accurate models are necessary to predict 

the network performance under fouling and reliable 

predictions to support fouling mitigation decisions. 

A detailed comparison of two dynamic heat 

exchanger models (a high fidelity, 2D distributed vs 

simpler 1D distributed) was presented, as well as a 

methodology to optimally estimate the parameters 

of the simpler model, without relying on indirect 

quantities such as the calculated fouling resistance. 

This parameter estimation approach considers all the 

interactions among the units in the network and 

exploits all measurements, including any soft-

sensed pressure drop, and incorporates them into 

individual tuning parameters for each exchanger. 

The proposed parameter estimation 

methodology was applied in 8 heat exchanger 

networks with a total of 37 exchangers. With an 

estimation horizon of appropriate length, the simpler 

model approximates the predicted performance of 

the network within a small error, relative to the high 

fidelity model. The much smaller size of the simpler 

model enables its use in advanced optimal fouling 

mitigation formulations, in particular for the 

demanding simultaneous optimal cleaning 

scheduling and flow distribution control problem, 

which was shown to be highly beneficial [10], [27]. 

This was confirmed here with a case study, where 

the combined optimal strategy generates significant 

savings. The optimal operation thus calculated 

(cleaning schedule and flow split control profiles 

over 1 year) was validated against the responses 

obtained with the full high fidelity model. The error 

between the models in the predicted operational cost 

is 1.4%. This confirms that the simpler model (with 

the proposed parameters fitting procedure) can 

approximate closely the more complex model over 

relatively long periods. It also indicates it can be 

confidently used within a nonlinear model 

predictive control (NMPC) strategy.  

NOMENCLATURE  

𝑑𝑖 Tube inner diameter, mm 

𝑑𝑜 Tube outer diameter, m 

𝐸𝑓 Fouling activation energy, kJ/kmol 

𝑃𝑟 Prandtl number 

𝑅 Universal gas constant, J/molK 

𝑅𝑒 Reynolds number 

𝑅𝑓  Fouling resistance, m2K/W. 

𝑇𝑓 Film temperature, K 

𝑇𝑡 Tube side outlet temperature, K 

𝑇𝑠 Shell side outlet temperature, K 

𝑃 Pressure, bar 

𝑤 Objective weight 

 

𝛼 Deposition constant, m2K/W day 

𝛾 Removal constant, m4K/N W day 

𝛿 Deposit thickness, m 

𝜆𝑑 Deposit thermal conductivity, W/m K 

𝜏 Shear stress, N/m2 
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