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 ABSTRACT 

 Fouling is one of the important phenomena which 
should be understood in many fields. We constructed 
statistical models with which we were able to predict fouling 
phenomena. Input values are experimentally obtained 
parameters and some characteristic values such as the 
degree of supersaturation. Fouling parameters such as 
thermal resistance Rf are calculated by our models and the 
results are in good agreement with experimental results. 
Therefore, we concluded that our models predicted the 
fouling phenomena with high accuracy. Those models are 
constructed with linear and nonlinear regression methods. 
Furthermore, our statistical approaches are practical and 
successful in understanding fouling. 
 
INTRODUCTION 
 Thermal resistance Rf and precipitation rate constant 
are very important parameters for studying fouling 
phenomena. However, in a real process, it is difficult to 
estimate those parameters with high accuracy because there 
is no predictive model that describes fouling phenomena at a 
satisfactory level. One of the many possible reasons is that 
we do not have well-established physical models to describe 
fouling phenomena. Although we have a lot of fouling data 
obtained in industrial plants and lab-scale experiments, 
lacking of physical models restricts us from analyzing these 
data scientifically, hence resulting in insufficient 
understanding of fouling. Since there is a lack of physical 
understanding, statistical approaches becomes an interesting 
and promising alternative. It is possible to extract some 
physically important parameters from experimental data and 
then, once we extract relationships between experimental 
conditions and resulting fouling phenomena, a statistically 
predictive model can be constructed. We use 
“chemoinformatics” (Gasteiger and Engel, 2003) in our 
works to study the fouling phenomena. 
 Chemoinformatics is a generic term used by many fields 
of chemistry. It is a field in which problems of chemistry are 
solved using informatics methods. There are many 
researches in the field, revolving around topics such as 
quantitative structural-property relationships, quantitative 
structure-activity relationships, reaction design and drug 
design. 

 In our study, we construct fouling models based on 
chemoinformatics methods that predict values of objective 
variables such as Rf from experimentally obtained 
parameters. We use a partial least squares (PLS) (Wold et 
al., 2001) method and a support vector regression (SVR) 
(Vapnik et al. 1995) method as linear and nonlinear 
regression methods. By using experimental data at various 
conditions, it was confirmed that PLS models with high 
accuracy were constructed and a SVR method improved 
predictive accuracy of our models. 
 In addition to experimentally obtained parameters, we 
improved predictive accuracy by considering characteristic 
values such as the degree of supersaturation. These values 
were extracted from experimental data using a set of heat 
transfer equations. Reconstructed models with these 
characteristic values predict fouling parameters with higher 
accuracy. By using our models, it is able to estimate fouling 
variables in a new experimental condition with high 
predictive accuracy. 
 
PLS 

 PLS is a method for relating X ∈  Rd (where d is the 
number of variables) and y ∈  R, by a linear multivariate 
model, but goes beyond traditional regression methods in 
that it models also the structures of X and y. In PLS 
modeling, the covariance between score vector ti ∈  R and y 
is maximized. Generally, PLS models have higher predictive 
power than those of multiple linear regression. 

A PLS model consists of two equations as follows: 
EPTX +′=                                      (1) 
fTqy +=                                       (2) 

where T ∈  Ra (where a is the number of components) is the 
score matrix; P ∈  Ra is an X-loading matrix; q ∈  R is a y-
loading vector; E ∈  Rd is a matrix of X residuals and f ∈  R 
is a vector of y residuals. The PLS-regression model is as 
follows: 

constXby +=                                   (3) 

qW)PW(b 1−′=                                  (4) 
where W ∈  Ra is an X-weight matrix and b ∈  R is a vector 
of regression coefficients. The number of components must 
be appropriately decided to construct a highly predictive 
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model. r2 and q2 values are used as the measure and defined 
as follows: 
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where yobs is the actual y value; ycalc is the calculated y value 
and ypred is the predicted y value in the procedure of cross-
validation such as leave-one-out. In this paper, the number 
of components is determined by maximum of q2. 
 
SVR 
 SVR is a method applying support vector machine 
(SVM) to a regression analysis and can construct  non-linear 
models by applying the kernel trick as well as SVM. Primal 
form of SVR can be shown to be a following optimization 
problem: 
Minimize 
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                      (7) 

subject to 

( ) ( )( )efyfy iieii −−=− xx ,0max            (8) 

where yi and xi, w ∈  R are training data; w ∈  R is a weight 
vector; e is a threshold and C is a penalizing factor which 
controls a trade-off between a training error and a margin. 
By minimization of eq. (7), we can construct a regression 
model which has a well balance between adaptive ability to 
the training data and generalization capability. A kernel 
function in our application is a radial basis function: 

( )
2'', xxexxK −∗−= γ

                            (9) 
where γ  is a tuning parameter controlling width of the 
kernel function. In this paper, LIBSVM (Chang et al., 2001) 
is used as a machine learning software. 
 
DATA 
 In this study, we analyzed fouling data measured by a 
concentric cylinder viscometer. Explanatory variables X are 
experimentally obtained parameters and characteristic 
values, which are extracted from experimental data. The 
formers are shear rate [s-1], slurry concentration at the end of 
cooling [wt%], cooling time constant [s] and degree of 
supersaturation at the onset of precipitation [-], and the 
latters are precipitation time constant [s], maximum degree 
of supersaturation [-]. With these variables, values of 
objective variables, Rf [m

2 K W-1] and viscosity [mPa s], are 
predicted. In addition, logarithmic transformation was used 
to viscosity. All variables were transformed to zero mean 
and unit variance as a preprocessing. The number of 
samples is 38. The details of experimental setups and 
obtained data were introduced in the talk by Inasawa et al. 
in the Eurotherm conference on Heat Exchanger Fouling 
and Cleaning (2009). 
 

RESULTS AND DISCUSSION 
 Table 1 shows modeling results of Rf and viscosity. 

RMSE (root mean square error) is defined as follows: 

n
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where ycalc,pred is the calculated or predicted y value and n is 
the number of samples.  
 In PLS modeling, predictive accuracy increased by 
using characteristic values in addition to experimentally 
obtained parameters. A piece of information extracted from 
experimental data would closely relate to Rf. Fig. 1 shows 
standard regression coefficients of Rf models in PLS 
modeling. From Fig. 1(a), shear rates contributed negatively, 
and slurry concentrations at the end of cooling, cooling time 
constants and degree of supersaturation at the onset of 
precipitation contributed positively to Rf. From Fig. 1(b), 
experimentally obtained parameters had the same trend as in 
Fig. 1(a), and precipitation time constants and degree of 
supersaturation contributed positively to Rf. Because these 
contributions were not conflicted, we can say that we 
constructed appropriate models predicting values of Rf. 
Then, in SVR modeling, predictive accuracy decreased by 
using characteristic values in addition to experimentally 
obtained parameters. Observation errors and errors of 
calculation of characteristic values could affect the accuracy 
in the SVR model. Fig. 2 shows the relationship between 
measured and predicted values of Rf. In Fig. 2, predicted 
values were obtained from the SVR model which was 
constructed from only experimentally obtained parameters. 
The plot shows an almost linear trend along the diagonal, 
reflecting the high prediction accuracy in Rf. 
 We also constructed prediction models of viscosity. The 
results are shown in Table 1. In PLS modeling, predictive 
accuracy increased when both characteristic values and 
experimentally obtained parameters are used. A piece of 
information extracted from experimental data would also 
closely relate to viscosity. Fig. 3 shows standard regression 
coefficients of viscosity models in PLS modeling. From Fig. 
3, all explanatory variables had the same trend as in Fig. 1. 
Because these contributions were not conflicted, we could 
construct appropriate models which predict values of 
viscosity. Then, in SVR modeling, predictive accuracy 
increased when both characteristic values and 
experimentally obtained parameters. High predictive model 
of viscosity was also constructed by using only 
experimentally obtained parameters. 
 If RMSE is smaller than experimental errors, regression 
models could be constructed, but in that case, the models fit 
even the experimental errors. By comparing RMSE with 
these errors, an appropriate model should be selected. 
 
CONCLUSIONS 
 A practical statistic approach has been proposed in this 
paper. First the key parameters such as thermal resistance 
values Rf and viscosity were obtained via regression using 
experimental results.  Then PLS and SVR are used as linear 
and nonlinear regression methodologies to obtain the 
necessary parameters for the fouling models. This model has 
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been tested and validated at our laboratory and successful 
results have been obtained. 
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Table 1. Modeling Results of Rf and Viscosity 

Rf viscosity 
method explanatory 

variables r2 
RMSE 
(×10-4) 

q2 
RMSE 
(×10-4) 

r2 RMSE q2 RMSE 

a 0.453 4.66 0.342 5.11 0.693 1.05 0.591 1.21 PLS 
b 0.656 3.69 0.550 4.22 0.775 0.916 0.690 1.06 
a 0.954 1.35 0.694 3.48 0.913 0.561 0.736 0.977 SVR 
b 0.875 2.22 0.667 3.68 0.983 0.247 0.899 0.603 

a:experimentally obtained parameters, b:experimentally obtained parameters and characteristic values, which are extracted 
from experimental data 

 
Fig. 2 The relationship between measured and 
predicted Rf in SVR 

A B C D  
(a) only experimentally obtained parameters 

A B C D E F  
(b) all explanatory variables 

Fig. 1 Standard regression coefficients of Rf models in PLS 
modeling. 
 A: shear rate, B: slurry concentration at the end of 
cooling, C: cooling time constant, D: degree of 
supersaturation on precipitation, E: precipitation time 
constant, F: maximum degree of supersaturation 

A B C D  
(a) only experimentally obtained parameters 

A B C D E F  
(b) all explanatory variables 

Fig. 3 Standard regression coefficients of viscosity 
models in PLS modeling.  
 Meanings of A-F are the same as those of Fig. 1. 
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