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ABSTRACT 
In the present study, radial basis functions are utilized to 
predict the deposit formation of soot particles in EGR 
(exhaust gas recirculation) coolers. The data bank for 
training the network contains a wide range of experimental 
data, i.e. inlet gas temperature of 250 and 400°C, inlet gas 
velocity of 10-120 m/s, coolant temperature of 25 and 80°C, 
and the inlet concentration of soot particles is 75-360 
mg/m³. The comparison between the experimental data and 
predicted results showed a qualitatively consistent model, 
which is able to predict fouling resistance with good 
accuracy. 
 
INTRODUCTION 
 In diesel-driven vehicles, NOx emissions can 
efficiently be suppressed by using exhaust gas recirculation 
(EGR) coolers. EGR basically functions by recirculating a 
portion of the exhaust gas back to the combustion chamber. 
As the formation of NOx is profoundly dependent upon the 
combustion temperature then the EGR flow contains lower 
oxygen, higher heat capacity which in tandem both tend to 
lower temperature resulting in reduced NOx formation.  

As the exhaust gas is cooled when passes through an 
EGR cooler; the soot particles tend to deposit onto the 
cooled surfaces. The existence of the fouling layer on the 
cooler walls leads to an apparent performance degradation 
of the EGR cooler (Abd-Elhady et al., 2011). Therefore, it is 
indispensable to study the mechanisms of fouling process. 
Nevertheless the study of the underlying mechanisms of 
fouling is too complex and requires in depth knowledge of 
the physical and chemical properties of bulk gas and fouling 
layer and the corresponding changes during the course of 
deposition process. Common methods for the prediction of 
fouling are generally based on various operating conditions 
of the cooler and the physical properties of exhaust gas and 
the deposit layer. 

Artificial neural networks, such as back-propagation 
and radial basis function networks have proven to be 
powerful function approximators (Poggio and Girosi, 1990). 
The main advantage of neural networks is to handle 
complex nonlinear systems without considering the detailed 
knowledge of underlying mechanisms. The absence of a 
process-based internal structure is a liability for the neural 
network when it faces noisy data. For more complicated 
systems it is not simple to describe the underlying 
mechanism with above-mentioned parameters of fouled 

EGR coolers. This is because the mechanisms of deposit 
formation cannot be easily related to operating conditions 
with poorly understood interaction which produces 
nonlinearities in the model of the system.  

Previous studies focused on parametric modeling of 
deposit formation in EGR coolers with numerous 
assumptions to ease modeling of the phenomena (Warey et 
al., 2012; Abarham et al., 2010; Hoard et al., 2008). When 
more than one mechanism is involved in formation of the 
fouling layer, then these models are not applicable. No 
attempt is made to make use of non-parametric methods for 
simulating fouling in EGR coolers through already being 
successfully applied for other processes (Malayeri and 
Müller-Steinhagen, 2003; Malayeri and Müller-Steinhagen, 
2001).  

The principal objective of this study is to analyze the 
conditions that influence the deposit formation in EGR 
coolers. The second aim is to correlate the experimental 
data by the use of a radial basis function neural network 
(RBFNN). Finally, the network results have to be compared 
qualitatively with available experimental data. 
 
PROBLEM STATEMENT 

Among various mechanisms, thermophoresis is 
dominant for deposition of nano-sized particles under non-
isothermal operating conditions (Abd-Elhady et al., 2011; 
Epstein 1997). It is the net motion of particles due to the 
presence of temperature gradient in the flow stream which 
can be expressed as (Whitmore and Meisen, 1977): 
 

௧ܸ௛ ൌ െܭ௧௛ߥ௠
ܶߘ

௠ܶ
 (1)

 
The mean gas temperature in Eq. (1) can be determined 

by solving energy conservation equations along the cooler 
which is prone to the deposit formation. The temperature 
gradient, the main factor in calculating the thermophoretic 
force, is also (Abarham et al., 2009): 
 
 

ܶߘ ൌ ௠ܶ െ ௪ܶ

ߜ
 (2)

 
and the thickness of laminar sub-layer is ߜ ൌ  ∗ݑ/ߥ5
(Abarham et al., 2009). 
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In addition to these equations, several assumptions are 
usually made in order to facilitate the modeling of fouled 
EGR coolers i.e.: 

 
 The flow is assumed to be fully-developed turbulent flow. 
 The thermo-physical properties of gas at inlet section 
remain constant. 
 The radial variations of gas properties along the cooler are 
neglected. 
 The physical properties of soot particles in the gas stream 
do not interfere with those of gas due to the small mass 
fraction of soot particles compared to air. 
 

However, these assumptions can only be applied to a 
limited number of idealized fouling models which always 
include uncertainties/inaccuracies that influence their 
objective functions. This could be because of the non-
linearity in the fouling phenomena, unsteady-state with high 
fluctuation characteristics of fouling process, and lack of 
understanding of underlying mechanisms (Müller-
Steinhagen, 2011). Accordingly, implementing a model 
which can handle all these assumptions and results in 
reliable outputs will be time-consuming and not easy to 
achieve.  

The utilization of neural networks is an alternative to 
handle such problems with considerably better accuracy 
than parametric models (Malayeri and Müller-Steinhagen, 
2003). This can be done by using radial basis function 
neural networks (RBFNN) as a universal approximator 
within the range of experimental results. For doing so, the 
dominant parameters that affect the formation of fouling 
should be considered. These parameters will be served as 
inputs of the network and mainly are: 

 
 Inlet gas temperature	ሺ ௜ܶ௡ሻ: It increases the mean 
temperature of bulk gas thus the temperature gradient as 
stated in Eqs (1) and (2) which in turn leads to higher soot 
particle deposition velocity.  
 Inlet gas velocity	ሺ ௜ܷ௡ሻ: It increases the shear stress on the 
cooler wall and so does the friction velocity which tends to 
reduce the thickness of laminar sub-layer resulting in 
removal of particles (Mirsadraee, 2011). 
 Coolant temperature	ሺ ஼ܶሻ: A coolant with a very low 
temperature leads to faster buildup of fouling layer due to a 
direct increase of temperature gradient between the wall and 
bulk gas. 
 Inlet soot concentration	ሺܥ௜௡ሻ: A higher amount of soot 
concentration of smaller sizes indicates that more particles 
are exposed to thermophoresis thus a thicker fouling layer 
would be built up. 
 

In addition, the geometrical properties of cooler surface 
including the surface roughness and geometry (rectangular 
or circular) and flow pattern (laminar or turbulence) affect 
the soot particle deposition. Nevertheless, as the geometry 
of the EGR cooler was similar over the range of attempted 
experiments in this study, its impact on fouling was ignored. 
As for the particle size which affects the deposition due to 
influence on thermophoresis, in the present study, was kept 
constant with an average value of 130 nm. Accordingly we 

did not consider it as an input to the network. Instead, the 
inlet gas temperature and velocity, coolant temperature and 
inlet soot concentration will be used as inputs for the 
attempted neural networks, and the values of fouling 
resistance during the course of operation will serve as 
output.  
 
UTILIZED EXPERIMENTAL RESULTS 

A detailed explanation of the test rig and analysis of the 
experimental results can be found elsewhere (Abd-Elhady et 
al., 2011).  

 
Selected Experimental Data and Discussions 

In this study, two models were made, first model is for 
a portion of data-bank including nine sets of experiments, 
each consists of 240 data points which were used to train 
and generalize the associated neural network. The operating 
conditions of above-mentioned experiments are listed in 
Table 1. The data points are divided into two groups. In 
training phase, 75% of data points are used and the rest in 
the generalization phase. The inputs of the RBFNN are the 
normalized parameters of the EGR cooler as stated in Table 
1 by dividing by their maximum value and the output of the 
RBFNN is the normalized fouling resistance that is again 
divided by its maximum value which may or may not reach 
the correspondent asymptotic value.  
 

Table 1 Operating Conditions of Experimental Data. 
Test 
Nr. 

௜ܷ௡ 
ሺ݉/ݏሻ 

௜ܶ௡ 
ሺ°ܥሻ 

 ௜௡ܥ
ሺmg/mଷሻ

஼ܶ 
ሺ°ܥሻ 

1 30 400 105 80
2 30 400 100 80
3 10 400 360 80
4 30 250 100 25
5 30 250 100 25
6 30 250 100 25
7 30 250 100 25
8 30 250 75 25
9 30 250 138 25

 
The second model includes three experimental data sets 

that are identical and only the inlet gas velocity changes. 
Here the inlet velocity of gas varies from 30 to 120 m/s, and 
the gas inlet temperature (400°C), inlet soot concentration 
(100 mg/m³) and coolant temperature (80°C) remained 
constant. The architecture and training methods for the 
RBFNN is described in the following section. 
 
RADIAL BASIS FUNCTION NEURAL NETWORKS 
(RBFNNs) 

The state approximation of a process based on the 
measured data has an exact solution only when the plant and 
the measurement data are linear. In contrast many 
applications are nonlinear in nature. Neural networks learn 
the nature of a process by experiencing and obtaining 
available information from the process. Poggio and Girosi 
(1990) stated that the ability of learning in a neural network 
is related to its ability of approximation. However, it should 
be noted that the process in which all the signals are 
undoubtedly stochastic make them to be superimposed by 
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some sort of noises. Hence, the strength of neural networks 
lies in their ability to make sense out of complex, noisy, or 
nonlinear data.  

Among various types of artificial neural networks, 
RBFNN, where the activation functions are radially 
symmetric and produce a localized response to the input 
variables are of great interest. The main features of radial 
basis function neural networks are their high accuracy and 
fast training/learning rate. Various types of activation 
functions exist including Gaussian, (generalized/inverse) 
multi-quadratic, thin plate spline, cubic, and linear 
functions. 

A RBFNN generally consists of two layers, the hidden 
layer of neurons that implements a set of radial basis 
functions and the output layer of neurons which implements 
a linear summation functions. The transform from the input 
nodes to the hidden layer is nonlinear and from the hidden 
layer to the output layer is linear. Radial basis function 
networks are used as a multidimensional interpolation 
technique of general mapping of	݂: Ըே → 	Ը. Let the 
number of input nodes, hidden and output layers be	݊, ݉ 
and ݌ respectively. For any input data point (any sample 
could be a vector) ܠ ൌ ሾݔଵ	ݔଶ ௜ݔ	… …  ௡ሿ, the output of theݔ
RBFNN is then	ݖሺܠሻ ൌ ሾݖଵሺܠሻ	ݖଶሺܠሻ…  .ሻሿܠ௣ሺݖ	…ሻܠ௞ሺݖ
Therefore, the model of a radial basis function neural 
network can be written in the form of: 

 

ሻݔ௞ሺݖ ൌ ߱௞ ൅෍߱௞௝ 	෍൫߮௝൫ฮݔ௜ െ ௝௜ฮ൯ߣ ൅ ௝൯ߣ

௡

௜ୀଵ

௠

௝ୀଵ

 (3) 

 
where,	߮ሺ‖. ‖ሻ	is the non-linear mapping of each neuron in 
input layer to the hidden layer and the ߣ௝ is the bias value 
for the class ݆ in the hidden layer, and ߱௞௝ ൌ ሾ߱௞ଵ 	…	߱௞ଷሿ, 
for ݇ ൌ 1, 2, … ,  are the weights of the connection between ݌
the hidden layer and ݇th node in the output layer and the ߱௞ 
is the bias value for the class ݇. 

The transfer functions of the hidden nodes are similar 
to the multivariate Gaussian density function: 

 

߮൫ฮݔ௜ െ ௝௜ฮ൯ߣ ൌ expቆെ
ฮ௫೔ିఒೕ೔ฮ

మ

ଶఙೕ೔మ
ቇ 			for	j ൌ 1,… ,m  (4) 

 
where, the notation ‖. ‖ indicates the Euclidean norm of 
distance, values of ߣ௝௜ are the center positions of the radial 
units and is a vector with the maximum number of elements 
as the input vector	ܠ, and	ߪ௝௜ are the widths of RBF units. It 
should be noted that each RBF unit has a unique center and 
width, and has a significant effect over a region defined by 
its defined parameters. 

The basic function of an RBF network is as follows. 
Each input vector ܠ is passed to the network then shifted in 
Ը୒	space according to centers of the radial basis function in 
the network. The Euclidean norm is computed for each of 
these shifted vectors. A schematic architecture of RBFNN 
with multiple inputs and multiple outputs is shown in Fig. 1. 

Now consider the action of the Gaussian basis function 
on the resulting outputs from the Euclidean distance 
measures. For data which are far away from the centers, the 

output from the corresponding basis functions will be small, 
approaching zero with increasing the distance. On the other 
hand, for data which are close to the centers, the output 
from the corresponding basis functions will be larger, 
approaching one with decreasing the distance. Hence, radial 
basis function networks are able to model data in a local 
sense. For each input data vector, one or more radial basis 
functions provide an individual output. 

 
Neural Network Training 

In a RBFNN, three group of parameters need to be 
chosen to adapt the network for a particular task. These 
parameters are the size of the hidden layer, center vectors 
and width parameters and the connecting weights. There are 
various methods for training the network to choose 
appropriate centers, weights and width parameters of the 
radial basis functions. The weights are initiated randomly 
between 0.1 and 2 and are updated in a way to minimize the 
mean squared error of overall network versus experimental 
data. The overall performance of RBFNN is evaluated in 
terms of mean squared error (MSE) according to the 
equation below: 

 
Fig. 1 – Schematic diagram of a RBFNN, ݔ is input node 
(normalized parameters listed in Table 1.), ߮ is the activation 
function of neurons in the hidden layer and ݖ are the output nodes 
(normalized fouling resistance). 
 
 

ܧܵܯ ൌ
∑ ሺݖ௞ െ ௞ሻଶݖ̂
௣
௞ୀଵ

݌
 (5) 

 
where, ݖ௞ is the desired output and ̂ݖ௞ is the actual output of 
the network, ݌ is the number of components in the analyzed 
set.  
 
Training Method  

The training of the RBFNN is performed in three steps. 
In the first step; the number of the neurons in the hidden 
layer is defined, in the second step; the center and width of 
the basis function are established from the input data. In the 
third step; the connection weights are adjusted to minimize 
the error defined in previous section. The training starts by 
setting the mean squared error of the RBFNN and 
maximum allowable number of neurons in the hidden layer. 
The neurons are then added to the hidden layer one by one 
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in order to fulfill the above-mentioned conditions. The 
inputs and the target matrices are introduced to the network 
initially, then the primary size of the hidden layer is set to 
minimum number of the allowable neurons, the network 
design the widths and centers of the network and return the 
desired configuration of the network, the MSE of the 
network is checked for validating the network performance 
and if the MSE is in a satisfactory range, then the procedure 
stops, otherwise another neuron is introduced to the network 
and this iterative procedure continues until the desired MSE 
or maximum number of neurons is reached, if the maximum 
number of neurons is achieved without meeting the desired 
error value of the network, the network must be trained 
again or one of the pre-trained networks with lowest error 
would be selected. 

In this study the centers of hidden neurons are obtained 
by method of random sampling of the input data iteratively 
by increasing the size of center matrix described previously. 
Once the centers for the basis function are established, the 
width of the basis function is computed using the 
normalization method of spread determination where the 
width is approximated as twice the average difference 
between consecutive centers (Bishop, 1995). Usually, the 
width is set between 0.1 and 2.0, in order to obtain an 
acceptable network performance, the width bigger than 2.0 
will results in no effect of input nodes and the network 
would give same results for all inputs and the widths 
smaller than 0.1 would result in a very sensitive network to 
the inputs and leads to increase the hidden layer size. It is 
important that the widths parameters is large enough the 
activation function neurons respond to the overlapping 
margin of the input space, but not too big that all neurons 
respond in a same manner. 

Once the number of neurons in hidden layer, centers 
and width are determined, then one should also calculate the 
weights of connections between the input nodes and hidden 
layer and the hidden layer and the output layer. The well-
known pseudo-inverse method is utilized for estimating the 
weights. Detailed explanation can be found elsewhere 
(Bishop, 2005).  

 
்ߣ ൌ ሺ்߮߮ሻିଵ்߮(6) ݖ 

 
where ߣ is the weight matrix defined previously, ݖ is the 
desired output of the RBFNN and ߮ radial basis function in 
hidden layer. The code was written in MATLAB by the 
authors. 
 
 
RESULTS AND DISCUSSIONS 

In this study, the first model used 9 sets of experiments 
with various operating conditions those are attempted for an 
identical EGR cooler. Each set of data has at least 240 data 
points that are collected in a sampling interval of one 
minute. Various operating conditions as a simple 4×9 
matrix are fed to the network and the output of the network 
as a row matrix expressing the fouling resistance is 
obtained. Therefore the input of the network is a matrix 
with four rows and 9 columns and the output of the network 
is a matrix of 9 rows with 240 columns. The hidden layer of 

the RBF network uses multiple Gaussian functions with 
various centers and widths which are determined during the 
training and generalizing steps. Results of implementation 
of RBF neural networks showed the ease of modeling of the 
fouling formation in EGR coolers. 

The experimental data were compared to the results 
using a RBFNN with an architecture described in previous 
section. This section compares the results obtained by the 
approach on the basis of measured and calculated cooler 
data. Accordingly, the MSE method, Eq. (5), was used for 
evaluating the performance of the RBFNN in prediction of 
the fouling resistance. 

Fig. 3 demonstrates the comparison of experimental 
data and simulation results for various operating conditions 
mentioned in Table 1. The presented experimental points 
were obtained during 4 hours period of continuous run and 
are shown in a normalized form to readily compare the 
performance of RBFNN for various operating conditions. 
The input data are normalized by dividing to the maximum 
value of the parameter, normalizing will also facilitate the 
utilization of activation function of hidden layer with steep 
exponential trends which otherwise leads to malfunctioning 
of the model. The RBFNN illustrates a very good agreement 
of the obtained data.  

The strength of the RBFNN laid in the estimation of 
fouling resistance for various operating conditions where 
the calculated MSEs for Fig. 2 (a) – (h) indicate the 
performance of the RBFNN.  

The calculated MSEs for Fig. 2 (a) – (h) are 0.0012, 
0.002, 0.01, 0.001, 0.001, 0.002, 0.002 and 0.004, 
respectively. Unlike other processes, the deposit formation 
is highly complex which exhibit peculiar behavior i.e. 
fluctuation of experimental data points in Fig. 2 (d) – (g). 
Nevertheless, RBFNN is capable of handling such data and 
the estimated value for fouling resistance in these cases is 
quantitatively comparable. The EGR experimental results 
contain high fluctuations and the network predictability is 
particularly poorer in these regions which can be seen in 
Fig. 2 (c) and (h). 

The network is also able to estimate highly fluctuated 
data, as shown in Fig. 3 separately. In this special case, one 
set of network centers is exactly located on the operating 
conditions of this experiment. Then the network estimates 
the exact solution for fouling resistance where MSE 
becomes zero. Sudden decrease of fouling resistance would 
be due to some incidents like partial removal of the fouling 
layer or change of its physical properties.  

The second model considers a RBFNN of the same 
architecture illustrated in Fig. 1, these experimental data are 
completely identical and the only parameter that is changed 
is the inlet velocity of the bulk gas. The results proved the 
performance of the network. The network can be tuned to 
cover regions with fluctuations/discontinuities at the 
expense of more sensitivity and more computing time. The 
network ability for doing so has already been illustrated in 
Fig. 3 in which the results are shown in non-normalized 
form and can be compared quantitatively versus each other 
and the output of the RBFNN. The network estimated 
smooth curves that have MSE < 0.005. On the other hand, 
the network estimates the asymptotic fouling resistance 
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qualitatively. The network ignores small noises or 
fluctuations of the experimental data and hand in an ideal 
curve of fouling resistance. 

 
CONCLUSIONS 

This paper reports on modeling of fouling resistance in 
EGR coolers using radial basis function neural networks. 
The network includes input nodes (operating conditions), 
hidden layer and output layer (fouling resistance). The 
operating conditions of the available EGR cooler are fed to 
the network via input nodes and through passing some 
weighted radial basis functions appear at the output layer 
presenting the fouling resistance of the cooler for a wide 
range of operating conditions. A databank of nine 
experimental runs is used for training and generalizing the 
first RBFNN. The second dataset is used for modeling the 
cooler with same operating conditions but different inlet gas 
velocities. The network successfully predicted qualitative 
trends of fouling resistance. The performance of the cooler 
is evaluated using the mean squared error method. 

It is shown that RBFNN is also capable of handling 
noisy data; however, special care has to be taken for 
configuring the network structure and selection of training 
method and generalizing phases. 

 
NOMENCLATURE 
‖. ‖ Euclidean norm 

 ௜௡ Inlet concentration of soot particles, mg m-3ܥ

 – ,௧௛ Thermophoretic coefficientܭ

 Mean Squared Error ܧܵܯ

 Radial Basis Function ܨܤܴ

஼ܶ Coolant temperature, °C 

௜ܶ Gas temperature at the outlet section, °C 

௠ܶ Mean temperature of bulk gas, °C 

௢ܶ Gas temperature at the inlet section, °C 

௪ܶ Wall temperature of cooler, °C 

௜ܷ௡ Inlet velocity of bulk gas, m s-1 

௧ܸ௛ Thermophoretic deposition velocity, m s-1 

 Actual network output ݖ̂

 ,Temperature gradient across the laminar sub-layer ܶ׏
°C m-1 

 Network input ݔ

 Network output ݖ

 
Greek Symbols 
 Thickness of laminar sub-layer, m ߜ

 Weights of the networks between the input nodes ߣ
and the hidden layer known as centers 

௠ kinematic viscosity of bulk gas at ௠ܶ, m2 s-1ߥ

߮ Radial Basis Function 

߱ Weights of the network between the hidden layer 
and the output layer 

Ը Domain of Real numbers 

 Gradient symbol ׏

Subscripts 
݅ th element of the input nodes 

݆ th element of the hidden layer 

݇ th element of the output layer 

݉ Number of input nodes 

݊ Number of neurons at the hidden layer 

݌ Number of neurons at the output layer 
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Fig. 2 – Comparison of simulation results and experimental data for various operating conditions (cont’d) 
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Fig. 2 (cont’d) – Comparison of simulation results and experimental data for various operating conditions 

 
 

 
Fig. 3 – Simulation results for highly fluctuated 

experimental data 
 
 
 
 
 

 

 
Fig. 4 – Simulation results for second dataset 
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Tin= 400 [°C], TC=80 [°C], Cin=100 [mg/m3]
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