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ABSTRACT 
 Various types of projectiles are available in the market 
with different shape, size, texture, stiffness and material for 
online cleaning of tubular heat exchangers. Perhaps the 
largest group by far is the one with spherical shape. There 
exists nevertheless no publication in open literature to 
recommend the optimum physical properties in terms of 
size, and stiffness that would influence the cleaning action 
best. This study proposes a mechanistic criterion to define 
how to select an efficient projectile based on contact area 
and exerted shear force that a projectile would have when it 
is propelled through a tube. The criterion is examined for a 
number of spherical projectiles of various sizes and stiffness 
to appraise its reliability and functionality.  To do so, the 
stiffness of projectiles is firstly measured and secondly 
numerous fouling experiments are carried out in which 
CaSO4 is used as foulant, and a plain tube as the heat 
transfer surface. The resultant criterion shows the domain of 
projectile sizes that would best clean the surface for a 
specified stiffness and vice versa. 
 
INTRODUCTION 
 Heat exchangers are the workhorse of most chemical, 
petrochemical, food processing and power generating 
processes. Of many types of heat exchangers, 
approximately 60% of the market is still dominated by shell 
and tube heat exchangers.  It is largely favored due to its 
long performance history, relative simplicity, and its wide 
temperature and pressure design ranges [1]. One major 
problem directly related to these requirements is the 
deposition of unwanted materials on the heat transfer 
surfaces, which occurs in the majority of heat exchangers. 
Fouling may cause one or more of several major operating 
problems, such as loss of heat transfer, under-deposit 
corrosion, increase pressure loss and flow mal-distribution.  
 Among different mechanical mitigation techniques, 
projectiles of different shapes e.g. sponge balls can be 
propelled through the heat exchanger tubes to mitigate 
deposition. Projectile cleaning is ideal as it can be applied in 
frequent intervals and will mitigate fouling on a continuous 
basis. Thus the degradation of heat exchanger efficiency can 
be controlled. The frequency and duration of application 
depends on the severity of fouling and the strength of 
interaction between cleaning projectile and deposit. The 
advantage of this method is that the projectiles can 

effectively mitigate fouling thus provide stable operation 
but limited to aqueous systems at temperatures below about 
120°C, due to the stability of the projectile material [2]. 
Nevertheless, the experimental data about the performance 
of various projectiles is scarce and non-conclusive which 
otherwise would be needed to recommend the optimum 
physical properties i.e. size, and stiffness that would best 
influence the cleaning action [3-4].  
 

 
Fig. 1 Comparison the cleaning performance of two soft and 
hard projectiles for similar operating conditions. Bulk 
temperature 40°C, surface temperature 71°C, fluid velocity 
1.3 m/s, CaSO4 concentration 4.6 g/L and injection interval 
of 5 minutes [5]. 
 
 It has long been asserted that harder projectiles would 
better clean the surface. Müller [5] though questioned such 
assertion when two projectiles of different stiffness were 
examined at the same operating conditions. Figure 1 
typically illustrates the cleaning performance of two 
projectiles which one is hard (P12, diameter of 20.2 mm) 
and can exert 932 kPa shear force. Throughout the 
attempted fouling runs for both projectiles, the injection rate 
was kept the same every 5 min in the early stage and the 
induction period [5]. 
 The softer one (P02, diameter of 22.0 mm) exerts only 75 
kPa [5]. More details about these specific projectiles will be 
provided in the following sections. The figure underlines 
that softer projectile keeps the tube somewhat cleaner under 
similar operating conditions, especially at the early stage of 
fouling. This indicates that the cleaning performance does 
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