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NOMENCLATURE 
 
A  Area,m2 
D  diameter, m 
Ea  fouling model activation energy, J/mol 
Fdrag  drag force, N 
Fshear shear force, N 
h  heat transfer coefficient, W/m2K 
L  length, m 
Nu  Nusselt, dimensionless number 
n  Prandtl exponent 
Δp  pressure drop, N/m2 
Pr  Prandtl, dimensionless number 
R  gas constant, J/mol K 
Rf  fouling resistance, m2K/W 
t  time, s 
Tf  film temperature, K 
T  temperature, K 
u  velocity, m/s 
y  coordinate, m 
 
Greek letters 

α  fouling model parameter, m2K/J 
β  fouling model parameter, dimensionless 
γ  fouling model parameter, m2K/J Pa 

f  fanning friction factor, dimensionless 

Т  shear stress, Pa 
η  dynamic viscosity, Pa s 
ρ  density, kg/m3 
 
 
Subscript 
i  inner 
o  outer  
w  wall 
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