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ABSTRACT 
 The cleaning of machinery and facilities is a key 
process to meet the safety needs in food and pharmaceutical 
production. The high significance of cleaning is a reaction 
to the rising importance of environmental protection. Due 
to the mostly unknown interaction between process 
parameters and cleaning behaviour of deposits, too many 
resources are used in industrial cleaning steps. This results 
in growing costs for the cleaning processes. 
This publication presents results of laboratory scale 
cleaning investigations of falling films with respect to the 
influence of the film thickness and hence predictable 
parameters. A fluorescence method was applied for 
determination of film thickness on stainless steel samples. 
With this publication it can be shown that a connection 
exists between the falling film cleaning behaviour and the 
wall shear stress or the mean velocity. Additionally it is 
shown that a low wetting rate is the most effective setup for 
saving cleaning fluid. 
 
INTRODUCTION 
 Contamination free and safe consumer products are 
given highest priority in the food and pharmaceutical 
industry. Therefore meeting the requirement of consistently 
high product quality cleaning is a key step. Validated and 
mainly automatic cleaning-in-place (CIP) processes are 
used, however currently resource efficiency is becoming 
increasingly important, particularly targeting the reduction 
of cleaning costs and down time including consideration of 
environmental aspects. Environmental conservation is also 
demanded by an EU directive 2008/1/EG. The 
contradictory intensions of saving resources and producing 
safe consumer products, necessitates the fulfilment of a 
balancing act for the food and pharmaceutical industry. A 
better understanding of influences on cleaning, especially 
of the flow parameter, can provide a contribution to reach 
resource-efficient processes. 
For CIP-processes static or dynamic cleaning devices are 

used. Using a spray ball or a rotating head, the main 
mechanical cleaning effect is provided by the 
gravity-driven falling film. Patel and Jordan (1970) 
investigated cleaning for the first time under the application 
of falling film. They used microorganisms to assess the 
influence of tilt angle between 30 ° and 150 ° (relating to 
the horizontal) on cleaning results. They identified that a 
vertical substrate (90 °) leads to the best cleaning results. 
Additionally, they determined a higher cleaning efficiency 
with increasing flow rate, caused by intensified turbulence 
and higher mechanical scrubbing. In addition, Patel and 
Jordan (1970) supposed an intensified turbulence caused by 
eddies and roll waves on the film surface, as an explanation 
for better cleaning. Lerch et al. (2013) studied 
washing-in-place processes (WIP) by falling film. In 
cleaning studies they compared a particulate riboflavin test 
soil in dry, pre-wetted and wet conditions. These 
experiments concluded that a tilt angle of 67 ° leads to 
faster cleaning than a vertical position describing it with a 
constant diffusion coefficient. The coefficient is 
independent of the tilt angle but, with diminishing 
inclination of the plane, the film thickness and the 
concentration gradient of the rinsing film increases. The 
best cleaning results were obtained with a combination of 
pre-wetting of dried soil, inclination of the sample and a 
high flow rate. Finally, a general relationship for all WIP 
processes could not be given, thus additional studies of flow 
parameters influencing cleaning behaviour and cleanability 
of material, as well as surface finishes, should be 
conducted. In addition, the different experimental results of 
Lerch et al. (2013) and Patel and Jordan (1970) indicate that 
the acting cleaning mechanisms may also have an influence 
on the design of components. Therefore it is necessary to do 
further cleaning studies with different soils in order to 
obtain general statements. 
Wall shear stress is commonly used as a description of 
cleaning (e.g. Detry et al. 2009), which can be calculated 
through knowledge of film thickness (Brauer 1971). 

Proceedings of International Conference on Heat Exchanger Fouling and Cleaning - 2013 (Peer-reviewed) 
June 09 - 14, 2013, Budapest, Hungary 
Editors: M.R. Malayeri, H. Müller-Steinhagen and A.P. Watkinson

 

              Published online 
www.heatexchanger-fouling.com

411



 

 

Resultantly, it is possible to quantify the influence of film 
thickness and waviness of the film surface on cleaning. 
Numerous methods were used to measure the local film 
thickness. Optical systems allow a spatially and temporally 
resolved measurement without influencing the falling film. 
This method is based on fluorescence technique, first 
introduced by Hewitt et al. (1964) and Hiby (1968). It was 
used, for example, by Adomeit (1996) to investigate the 
wave structure of Dimethylsulfoxid film flow on the inner 
side of a transparent vertical pipe. In measuring the 
intensity of the fluorescence of the film forming fluid it is 
possible to calculate the 3-dimensional film thickness. 
Al-Sibai (2004) used Cumarin 152a, mixed with silicone oil 
and a laser light to excite fluorescence. Ausner (2006) also 
used the light-induced-fluorescence (LIF) technique to 
measure two fluids (water and Toluol) separately and in 
parallel on smooth and structured stainless steel plates. 
Whereas Hoffmann et al. (2005) used this experimental 
data to validate his CFD (Computational Fluid Dynamics) 
calculations. A fluorescence tracer Rhodamin B was used 
for the water phase and 
1-(4’-Nitrophenyl)-6-Phenyl-Hexa-1,3,5-triene for the 
Toluol solution. In addition Vlachogiannis and 
Bontozoglou (2001) used this technique to determine the 
wave dynamics with the tracer Fluorescein. For film 
thickness calibration different methods e.g. cuvettes, 
contact needle and weighted Petri dishes were used. 
This paper shows (a) the local film thickness and its 
predictable flow parameters for different wetting rates in 
comparison with cleaning results provided by falling film 
on surfaces with only 30° inclination. The film thickness 
was predicted by a modified LIF technique that uses a 
non-toxic tracer with very high fluorescence intensity even 
at low concentration. Several steps of correction are 
minimising various errors and lead to high quality 
measurement data. The paper comprises a droplet 
calibration method, which allows the consideration of 
different optical properties of the probes. Furthermore (b) 
new results for cleaning a food based model soil by gravity 
driven falling film are presented based on the discrete 
cleaning rate. Finally this paper presents (c) a comparison 
of film flow parameters and cleaning results. 
 
EXPERIMENTAL TECHNIQUES 
The test rig used for the cleaning experiments is shown in 
Fig. 1. 200	 litres of cleaning fluid (distilled water) are 
stored in a tank and pumped into an intermediate container. 
An overflow guarantees a constant fluid level. Hence as the 
flow is not influenced by a pump, a constant pressure at the 
outlet is ensured and so an undisturbed film formation can 
be assumed. An electric heating element guarantees that all 
experiments are done with a temperature of ~25	°C. The 
flow meter is positioned between the tank and the outlet. 
With an additional valve, it is possible to set a flow rate 
between 22.8	l/h and 236	l/h. 

  
Fig. 1 Cleaning and flow measurement test rig 

 
In relation to the 100	mm wide stainless steel substrates 
(EN 1.4435, AISI~316L), a volumetric wetting rate 
 

Γ୴ ൌ
୚ሶ

୆
           (1) 

 
from 0.23	m³/ሺh ൉ mሻ to 2.36	m³/ሺh ൉ mሻ is possible. To 
assure a fully developed film flow, an inlet area with a 
length of 500	mm is used. Takamasa and Hazuku (2000) 
noted that for wave formation on a vertical surface the entry 
length of L ൌ 333.5	mm  is necessary for a completely 
developed flow. An inlet area of ~500 mm used in the test 
rig is sufficient to ensure a developed film flow; this has 
been verified for each setting. Afterwards the measuring 
area, with a length of 300 mm, was arranged. Optical 
measurements are achieved by utilising a camera and an 
illumination device above the measuring area. 
 
METHODS 
Soiling preparation  
 The model soil consists of distilled water merged with 
0.8 % (w/v) Xanthan (CAS 11138-66-2) and 3 % (w/v) 
zinc-sulfid crystals (Co. Honeywell® 50018 Lumilux®), 
added as a tracer to increase the contrast between surface 
and soil. The solution was mixed for 30 minutes with a 
rotating speed of 700	r/min  until all Xanthan was 
dissolved. 
 
Soiling process 
 A dip coating process was used for soiling, which 
ensured a reproducible coating of the substrates. For this 
probes with dimensions of 300 mm x 100 mm were dipped 
in a container filled with the model soil. A constant dip 
velocity of 5	mm/s and return stroke velocity of 2	mm/s 
was applied. This slow dip velocity avoided the insertion of 
air bubbles, whilst the slow return stroke velocity ensured 
the draining of any excess amount of soil.  
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Fig. 8 Experimental setup for cleaning tests 
 
The cleaning tests were done for a tilt angle of 30	° with 4 
repetitions for each measuring point. Four volume flow 
rates were used (93	l/h, 140	l/h, 192	l/h and 236	l/h). 
Related to the wetted width of the sample (B ൌ 0.1	m ), 
volumetric wetting rates in the range of 0.93	m³/ሺh ∙ mሻ 
to 2.36	m³/ሺh ∙ mሻ  were applied. The upper threshold 
1.86. . .2.24	m³/ሺh ∙ mሻ was chosen based on 
recommendation of The American Society of Mechanical 
Engineers (2008). The cleaning was carried out under a 
temperature of ~ 25	°C , which guarantees comparable 
temperature conditions to film thickness measurements. 
Especially in the cleaning investigation, wetting problems 
occurred with wetting rates below a volumetric wetting rate 
of 0.93	m³/ሺh ∙ mሻ. 
 
Data processing/Data analysis 

The processing of the measurement data was also 
conducted as described in Fuchs et al. (2012). Thus errors 
through experimental setup and measurement were 
minimized. Additionally, differential illumination of the 
soil is taken into account; this allowed the relationship 
between excitation, emission and surface mass to be 
determined (see Fig. 9). The excitation was measured with 
an irradiation intensity measurement device (Co. Ahlborn, 
FLA 603 RW4) combined with a filter (Co. Asahi, 
ZVS0490). 
 

 
Fig. 9 Mean grey value in dependence of surface mass for 
different excitation settings 

Through using a surface regression for the results shown in 
Fig. 9, the following equation can be determined (Rଶ ൌ
0.9953): 
 
Iେሺm, Eሻ ൌ ሺa ∙ mଶ ൅ b ∙ mሻ ∙ ሺc ∙ Eଶ ൅ d ∙ E ൅ eሻ (8) 
 
Due to the non-linear relationship between the measured 
intensity and the surface mass, the correction of the 
irradiation is done for every pixel separately. The 
calculation of the surface mass from the measured grey 
value is possible using: 
 

m ൌ െ
ୠ

ଶ∙ୟ
൅ ටቀ

ୠ

ଶ∙ୟ
ቁ
ଶ
൅

୍ి
ୟሺୡ∙୉మାୢ∙୉ାୣሻ

    (9) 

 
After this step, the mean surface mass mഥ  was calculated for 
the middle zone of the substrate (see Fig. 7). The changing 
grey value between dry state and first wetting is corrected 
by a factor; thus optical damping of the emission by the film 
is considered. 
Based on Mauermann et al. (2010a) and Köhler et al. (2011) 
a normalized cleaning curve can be calculated by using: 
 

rሺtሻ ൌ
୫ഥ ሺ୲ሻି୫ഥౣ౟౤

୫ഥౣ౗౮ି୫ഥౣ౟౤
         (10) 

 
The following data analysis steps are described in Köhler et 
al. (2011) for a starch based model soil. For determining the 
cleaning characteristics the following Weibull model 
proposed by Dürr and Graßhoff (1999) was used: 
 

rሺtሻ ൌ e
ቀ
౪
౪ౙ
ቁ
౨ౙ

         (11) 
 
Next the cleaning time for reaching a residual deposit of 
5 % from the initial surface mass mഥ଴  can be calculated 
with: 
 

tଽହ ൌ tୡሺെ ln 0.05ሻ
భ
౨ౙ        (12) 

 
To compare cleaning results, a main cleaning rate as 
depicted below (also see Mauermann et al. 2010a), 
 

Rഥଽହ ൌ
଴.ଽହ∙୫ഥ బ
୲̅వఱ

          (13) 

 
defined as removed amount of soil per time, can be used. 
With this characteristic value it is possible to describe the 
time variation of the residual contamination independently 
from the surface mass. 
 
RESULTS AND DISCUSSION 

The structure of film boundary surface changes 
between lower and higher Reynolds numbers is shown in 
Fig. 10.  
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Fig. 13 Mean wall shear stress and mean flow velocity for 
tilt angle of 30 ° 
 
With increasing volumetric wetting rate, the mean wall 
shear stress and the mean velocity increases nearly linearly. 
The flow velocity increases faster than the mean wall shear 
stress (see Fig. 13). One explanation is the flow profile, in 
which the gradient at the wall does not change as fast as the 
increasing mean flow velocity. 
In the following section the measurement of the film 
thickness is compared with the cleaning tests. Typical 
cleaning curves of Xanthan soil are shown in Fig. 14. The 
residual contamination normalized to the initial surface 
mass as a function of time is also illustrated. For the 
presented experiments a clean surface is defined by a 
residual contamination of 5 % (horizontal line in Fig. 14). 
The cleaning process with the given set up shows four 
cleaning phases (see Fig. 15). In phase I there is no 
significant cleaning progress because swelling of the soil 
must first take place in order to minimize cohesive and 
adhesive forces. The three following phases are described 
in Bode et al. (2007) for whey protein. In phase II the 
cleaning rate increases with the progress of swelling, so the 
diffusion process dominates because the deposit swells in 
layers. In phase III the swollen soil is gradually carried 
away by mechanical force of the falling film, demonstrating 
a combination of dissolving and removing of the deposit by 
shear action due to cohesive and adhesive loss. In contrast 
to Bode et al. (2007), diffusion is apparently not the 
dominant process in this phase due to the inconstant 
cleaning rate. In the case of diffusion, the cleaning rate 
would be approximately the same as the result of a nearly 
constant concentration gradient. After phase III the cleaning 
rate decreases as the loss of adhesion force between 
material surface and model soil dominates, and hence 
cleaned area is increasing. In this section the Xanthan 
model soil is meanly removed by shear action of the 
flowing fluid. 
 

 
Fig. 14 Cleaning curves for different Reynolds numbers, 
bars represent standard deviation 

 

 
Fig. 15 Discrete cleaning rate for ܴ݁	 ൌ 	290 and 734, tilt 
angle 30° 
 
It is possible to calculate a mean cleaning time for all probes 
of a wetting rate set up until the defined boundary condition 
is reached. For the lowest wetting rate, the highest cleaning 
time is necessary. Vice versa; the highest wetting rate 
requires the lowest cleaning time. However the mean 
cleaning time depends on the initial surface mass, which 
makes another characteristic value necessary for 
comparison. 
For every cleaning experiment a main cleaning rate can be 
calculated, which is independent from the surface mass 
until a residual contamination of 5 % related to starting 
soiling weight. A summary of the main cleaning rates with 
falling film on stainless steel is shown in Fig. 16. 
 

 
Fig. 16 Main cleaning rates for cleaning with gravity driven 
falling film until a residual contamination of 5 %, bars 
represent standard deviation 
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Fig. 17 Fluid mechanical cleaning efficiency for different 
Reynolds numbers, bars represent standard deviation 
 
The influence of the wetting rate shows a good agreement 
to investigations of Lerch et al. (2013) where a high flow 
rate leads to faster cleaning. The main cleaning rate shows a 
dependency on Reynolds number. Within comparisons of 
mean cleaning time, it is not possible to decide which 
parameters are most effective to improve cleaning. The 
following fluid mechanical efficiency number according to 
the cleaning efficiency for spray cleaning (Mauermann 
2012) allows a better comparison; 
 

Eഥୖ,୊୊ ൌ
୫ୟ୧୬	ୡ୪ୣୟ୬୧୬୥	୰ୟ୲ୣ

୴୭୪୳୫ୣ୲୰୧ୡ	୵ୣ୲୲୧୬୥	୰ୟ୲ୣ
ൌ

ഥୖవఱ
୻౬

ൌ
଴,ଽହ∙୫బ

୲వఱ∙୻౬
ൌ

଴,ଽହ∙୫బ
౒౪౥౪
ా

 

            (18) 
 
This number indicates the expense in relation to benefits. 
Fig. 17 shows the comparison of different parameter 
settings. Although the cleaning time is decreasing with 
increasing wetting rate, the fluid mechanical cleaning 
efficiency decreases. The mean cleaning rate Rഥଽହ does not 
increase in equal amount to the mean cleaning time ݐଽ̅ହ 
decrease, therefore the cleaning efficiency is lower. One 
explanation may be that simply a lower film thickness is 
necessary to enable the diffusion process. The exterior fluid 
does not contribute to the diffusion process. By using a low 
flow rate, the cleaning efficiency can be raised by ~60	% 
between Re	 ൌ 	743  and Re	 ൌ 	290 . But it should be 
mentioned, that a complete wetting of the contaminated 
surface is necessary, although for Re	 ൌ 	290 in particular, 
it was not always possible to secure this basic requirement. 
However for cleaning tests this condition was guaranteed 
through pre-wetting of the inlet area. In production 
condition this requirement can be assured for instance by 
applying an initial high wetting rate for a short time. 
Obviously the most effective parameter selection has to 
produce a low wetting rate so resources (e.g. cleaning fluid 
and energy) can be saved, which brings ecological and 
economical benefits. If time is the most important factor to 
reduce down time of the facility, a high wetting rate is the 
best option. 
 

 

 
Fig. 18 Comparison of main cleaning rate and mean 
velocity (upper diagram), cleaning rate and mean wall shear 
stress (lower diagram) for a tilt angle of 30 ° (including 
95 % confidence band, bars represent standard deviation) 
 
Through comparing the flow parameters and cleaning 
results, correlations can be confirmed between mean 
velocity and main cleaning rate, as well as mean wall shear 
stress and the main cleaning rate for the falling film 
cleaning (see Fig. 18). This suggests an influence of the 
wall shear stress and also of the mean velocity on the 
cleaning behaviour for the Xanthan model soil. There is 
also an influence of the volumetric wetting rate, because the 
walls shear stress is impacted by the flow velocity gradient 
at the wall and hence through the wetting rate. The 
maximum film thickness (maximum wave height) is not a 
dominating factor, since it is nearly constant in the 
investigated Reynolds number range (see Fig. 12). The 
variation of film thickness through waves is also not a 
dominant factor, because the ratio of maximum and mean 
film thickness, respective to wall shear stress, is for 
Re	 ൏ 	400 greater than for Re	 ൐ 	400. Thus in contrast to 
Patel and Jordan (1970), no influence of large waves could 
be determined. Therefore it is generally not necessary to use 
a fully turbulent film flow ( Re ൐ 	400  Brauer 1971, 
Kraume 2004) to clean a soil that swells easily and is 
removable by relatively low shear action. However, the 
condition of a complete wetting has to be ensured. 
 
CONCLUSIONS 
1. The determination of film thickness and its 

applications to derive characteristic values, such as 
wall shear stress and mean flow velocity for a tilt angle 
of 30 °, could be shown. 

2. The application of a measuring method for 
determination of cleaning behaviour could be shown. 

3. The fluid mechanical cleaning efficiency was 
introduced to evaluate cleaning efficiency. 
Consequently the flow with a low Reynolds number of 
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about Re ൌ 290  shows the best fluid mechanical 
cleaning efficiency. 

4. The use of a low flow rate (Re ൌ 290) rather than a 
high flow rate (Re ൌ 734) results in an increase of 
fluid mechanical cleaning efficiency of about 60	%. 
Under observance of this knowledge, it is possible to 
have the highest efficiency of cleaning fluid and thus 
resource-efficient cleaning. 

5. It was demonstrated that the wall shear stress as well as 
the mean velocity appears to be the dominating 
influencing factors for cleaning of a Xanthan model 
soil. 

6. Further work must be performed to determine the 
influence of other parameters, e.g. tilt angle, on 
cleaning and the comparison with flow characteristic. 
Furthermore, the influence of film surface waviness on 
the cleaning behaviour with, for example, frequency 
distribution should be evaluated. 
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NOMENCLATURE 
a  Factor, cm4/mg2 
A  Area, m² 
b  Factor, cm²/mg 
B  Wetted width, mm 
c  Factor, cm4/µW² 
d  Factor, m²/µW 
E  Irradiance, µW²/cm², W/m² 
e  Factor, dimensionless 
Eഥୖ,୊୊ Fluid mechanical efficiency, mg/(cm²·s) per 

m³/(s·m) 
g  Acceleration due to gravity, m/s²  
Iେ  Intensity of the camera, grey value, dimensionless 
Iେ,୫ୟ୶ Maximum intensity of the camera, grey value,  
  dimensionless 
I୧,ଵ  Grey values before correction, dimensionless 
I୧,ଶ  Grey values after correction, dimensionless  
I୐୙୘  Look up table, dimensionless 
Iୖୣ୤  Reference, dimensionless  
Iୖୣ୤,୫ୟ୶ Maximum reference value, dimensionless 
I  UV-intensity, dimensionless 
k  Parameter, 1/mm 
m  Surface mass, mg/(cm²) 
mഥ   Mean surface mass, mg/(cm²) 
mഥ୫୧୬ Minimum mean surface mass, mg/(cm²)  
mഥ୫ୟ୶ Maximum mean surface mass, mg/cm²)  
m଴  Initial surface mass, mg/cm² 
r  Remaining soil, dimensionless 
Rഥ  Radius, mm 
Rഥଽହ  Main cleaning rate, mg/(cm²·s) 
rୡ  Slope of the cleaning characteristic, dimensionless 
Re  Reynolds number, dimensionless 

Rଶ  Coefficient of determination, dimensionlesst 
 Time, s 
tଽହ  Cleaning time to remove 95 % of soil, s  
tୡ  Typical cleaning time constant, dimensionless  
V  Volume, mm³  
V୲୭୲  Total Volume, m³  
Vሶ   Volume flow rate, m³/h 
wഥ   Mean flow velocity, m/s  
x  Direction x, mm 
 Direction y, mm  ݕ
 
α୔୪  Tilt angle, ° 
δ  Thickness, mm 
δା  Dimensionless film thickness, dimensionless 
δୢ   Droplet height, mm 
δୢ,ୡ୭୰୰   Corrected droplet height, mm 
δୱ୦   Droplet height measured by shadow method, mm 
ρ  Density, kg/m³  
τ୛  Wall shear stress, Pa  
Γ୴  Volumetric wetting rate, m³/(h·m) 
ν  Kinematic viscosity, m²/s 
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