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 ABSTRACT 

 In this article, the problem of building a mathematical 
model of a cross flow heat exchanger based on observed 
data from a numerical simulation system is studied. In 
order to explicitly take into account the dependence of the 
system dynamics on the hot and cold mass flow rates, a 
particular model structure, named linear parameter-varying 
(LPV) model, is considered. By using this structure, an 
output error identification problem is formulated. A 
parameter estimation scheme is introduced in which a cost 
function is minimized using a non-linear programming 
method. In this study, a finite volume digital model 
simulator is used to simulate and generate data. Using this 
simulator, a three step approach is carried out to get a 
model of a clean cross flow heat exchanger. The outputs of 
this clean model are then compared to the outputs of the 
simulator in which fouling is simulated by introducing a 
fouling factor inside the heat exchanger. This simulation 
shows that fouling detection can be easily performed. 
 
INTRODUCTION 
 Fouling has been and is still a major concern in a great 
number of industrial processes such as refineries, diary 
factories, district heating and so on. Apart from local 
measuring techniques such as proposed, e.g., in (Bott, 
2000) or (Ismail, et al., 2004), model-based techniques are 
more and more popular to monitor or to detect fouling. 
Although some interesting results can currently be found in 
the model-based fault detection literature (Lalot, et al., 
2007), (Jonsson, et al., 2007), (Lalot and Mercère, 2008), 
new developments must be proposed to deal with non-
linear grey-box models (Ljung, 1999). Indeed, most of the 
algorithms exploited until now can only be applied on 
linear time-invariant (LTI) systems, condition which may 
be restrictive in practice. In this communication, this 
problem is sorted out by introducing a particular model 
structure: a linear parameter-varying (LPV) model 
(Shamma, 1996). An LPV system is more precisely a finite 
dimensional linear system whose state-space or transfer 
function entries depend on time-varying parameters 
(named the scheduling variable) assumed to be measurable 
signals. The development of such models is mainly linked 
to control engineering where a control system must be 

designed in order to guarantee the suitable closed loop 
operation of a given plant in many different operating 
conditions. A well known example of controller design 
technique using this basic idea is the gain scheduling 
approach (Shamma and Athans, 1992). 
 In the identification framework considered hereafter, 
the LPV structure allows the assessment of a non-linear 
system by deriving a parameter-dependent model on the 
basis of local experiments, i.e., experiments in which the 
scheduling variable is held constant and only the control 
input is excited. Such a viewpoint has been considered in 
(Steinbuch et al., 2003), (van Helvoort et al., 2004), 
(Paijmans et al., 2008) for motion and robot control. Some 
recent developments concerning this identification 
procedure can also be found in (Lovera and Mercère, 
2007). Hereafter, estimation of the parameters for each 
constant scheduling variable model is performed by using a 
particular output error (Trigeassou et al., 2003). Then, 
these local models are interpolated using a classic least 
squares algorithm to get an LPV model of the process. 
Thus, roughly speaking, the global behaviour of the system 
is embedded using a particular set of interpolated LTI 
models. 

In order to validate this identification procedure on 
heat exchanger input-output (I/O) data, a mathematical 
model of a cross flow heat exchanger is used. Contrary to 
(Jonsson et al., 2007) where a commercial CFD tool is 
used, a particular numerical simulation model is employed. 
This simulator is similar to models given in (Kou and 
Yuan, 1997), (Mishra et al., 2008). The model can 
accurately simulate transient behaviour of different inputs 
and properties, which is necessary when mimicking real 
inflow situations with and without fouling. 

The paper is organized as follows. In the second 
Section, the mathematical model of the cross flow heat 
exchanger is explained. Then, the third Section is 
dedicated to the identification procedure by stressing on 
the LPV model building phase. The experimental 
specifications and the simulation results are given in the 
fifth Section. The sixth Section concludes this 
communication. 
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SIMULATION MODEL 
 This section describes the simulation model used to 
generate data for outflow conditions in the heat exchanger. 
The simulator should represent the physics of the problem 
in an accurate way and, if this is fulfilled, it can be argued 
that the validity of the identification methods can be 
proven with simulated data representing the real world. 
Mathematical formulation 
 The model is based on a mathematical representation 
of two fluids flowing perpendicular to each other, 
separated with a fixed wall. Various parameters can be 
adjusted in order to represent different sizes of cross flow 
heat exchangers, as seen in Figure 1. 
 

 
 

Fig. 1 A simple illustration of a cross flow heat exchanger. 
 

The state of the heat exchanger at a given point in time 

is represented by three field variables ),( yxTc , ),( yxTh  

and ),( yxTs representing respectively the temperatures of 

the cold fluid, the hot fluid and the wall (the subscript s  
denotes steel in this case). Three coupled partial 
differential equations describe the temperature fields, 
namely 
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These equations describe advection (convection) without 
diffusion, but with source terms on the right hand side that 
represent heat flow from the hot fluid to the wall and from 
the wall to the cold fluid. It is furthermore assumed that the 
inflow is uniform for both fluids and that complete mixing 
takes place just before the fluids exit each passage. Note 

that the heat capacity of the wall sscρ  will delay the heat 

transfer between fluids in dynamic situation, which is the 
main reason for including the wall. 

To summarize, the inflow temperature, mass flow rate 
and heat transfer coefficient U  are generally assumed to 
be time dependent in the model while other parameters are 
constant.  Thus, Eq. (1-3) represent a real heat exchanger if 
they are solved in a consistent and accurate manner. 

Numerical scheme 
 Various numerical methods are available to deal with 
advective-diffusive problems, both finite element methods 
as, e.g., (Westerink et al., 1989) or and also finite 
difference methods, see, e.g, (Leonard, 1979). 
Comparisons between available methods, see, e.g., (Choi et 
al., 1995), indicate that the method presented in (Leonard, 
1979) as well as an improved version in (Leonard, 1991) 
can be considered as the state of the art for such a problem. 
Therefore, the QUICKEST numerical scheme is applied 
for the advective part of the problem. The only boundary 
conditions in this case are the inflow temperatures, which 
require alternative treatment for finite difference points 
close to the inlets, as discussed in (Sousa, 2007). 
 The source terms on the right hand sides of Eq. (1-3) 
are approximated by a central difference method in time, 
while the advection terms are explicit according to the 
QUICKEST scheme. Therefore the time stepping method 
hereafter can be regarded as a semi-implicit method. The 
Courant number characterizes advection and is defined as 
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for the cold and hot side of the heat exchanger. Now let the 
superscript j  denote the current time-step and 1+j  a 

new one. Also, let j
cT̂  and j

hT̂  denote temperatures 

calculated with the QUICKEST scheme, which would 
result in a pure advective temperature at time-step 1+j . 

Then the coupled system becomes 
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where C  and A  are matrices respectively defined as 
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The result is a numerical scheme for updating the three 
fields in time, with an accurate high order advection part 
and a source part based on central differences in time. 
There is one stability requirement that must be fulfilled, 

which is that both cCo  and hCo  must be smaller than 

one. 
 
IDENTIFICATION OF THE LPV MODEL 
 A cross flow heat exchanger is by construction a non-
linear system. Then, a particular model structure must be 
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used to get an accurate model of the system behaviour. 
Because it is really difficult to find a priori non-linearities 
mathematical models of such a system, the procedure 
applied in this communication consists in 

1. estimating several local LTI models, by applying 
classic estimation methods dedicated to LTI 
systems, on the basis of local experiments in 
which a particular variable, representing the 
current operating point, is held constant and the 
control input is (persistently) excited, 

2. interpolating these local LTI models to get finally 
a single LPV model encompassing the global 
behaviour of the system in a compact manner. 

By this way, the final model is able to reproduce efficiently 
the dynamical behaviour of the non-linear system without 
requiring complex algorithms for non-linear identification. 
LPV model 
The LPV model used hereafter has the following structure 
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where p  is the Laplace transform symbol, )(
0

pTc  and 

)(
0

pTh  are respectively the Laplace transform of the cold 

and hot output temperatures, )( pT
ic  and )( pT

ih  are 

respectively the Laplace transform of the cold and hot 

input temperatures, )( pM c
&  and )( pM h

&  are respectively 

the Laplace transform of the cold and hot mass flow rates, 

)( pH nl  is the transfer functions relating the output 

temperature l  and the input temperature n  and )( pG nl  

is the transfer functions relating the output temperature l  
and the input mass flow rate n . 

It is important to notice that the 
0cT  (resp. 

0hT ) is not 

directly linked to 
icT  (resp. 

ihT ). Indeed, a delay cδ  

(resp. hδ ) is required to take into account the 

transportation duration of the cold fluid (resp. hot fluid) in 
the cross heat exchanger. More particularly, 
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As it was said before, the parameters of the LPV 
model explicitly depend on a scheduling variable assumed 
to be measurable when the system is working. Here, the 
scheduling variable is the vector 
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This choice is linked to the fact that these two signals are 
measured and controlled easily on real heat exchangers. 
Thus, the assumption that the scheduling variable is held 
constant during the local experiments can be satisfied. 

Here, the LPV structure exclusively concerns the transfer 

functions )( pH nl , { }hcn ,, ∈l . Under the assumption 

that each transfer function )( pH nl  is second order, i.e., 
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 the static gain, nlς  the damping ratio and nlω  

the natural frequency of the model, the LPV structure is 

introduced by assuming that the parameters 
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where γ  stands for 1b , 1a  or 2a . On the contrary, the 

parameters of the transfer functions )( pG nl  are assumed 

to be invariant with respect to cm&  and hm& . 

Output error LTI model identification of )( pH nl , 

{ }hcn ,, ∈l  

 The first step of the identification procedure consists 
in holding the mass flow rate signals constant and 
identifying the LTI transfer functions for each operating 

point κ . Assuming that cm&  and hm&  are fixed, it is 

obvious that 

• the delays cδ  and hδ  are constant, 

• the coefficients
n

b
l1

, 
n

a
l1

 and 
n

a
l2  (or nK

l
, nlς  

and nlω ) are invariant, 

• the influence of the terms )()( pMpG nn
&

l
, 

{ }hcn ,, ∈l , on the dynamics of the system is 

null. Indeed, as soon as cm&  and hm&  are fixed, 

these elements are constant. 
These observations have three interesting practical 
consequences: 

• Firstly, the effects of the constant time-delays can 

be easily overcome by shifting the input data 
icT  

and 
ihT  with respect to the values of cδ  and hδ  

after the I/O data acquisition. 

• Similarly, the influence of )()( pMpG nn
&

l
, 

{ }hcn ,, ∈l  can be cancelled during the data 

treatment phase when the means of the I/O data 
are removed. 

• Finally, since the parameters of the transfer 
functions to assess are constant, classic LTI 
system identification methods can be used to 
identify the local models. 
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Considering all these remarks, the LTI models to identify 
satisfy 
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where 
idcT  and 

idhT  are the input data 
icT  and 

ihT  after 

time-delay treatment. 
 Many algorithms are now available to identify such 
LTI models (Ljung, 1999). They are mainly characterized 
by their estimation mechanism, their accuracy and their 
ability to converge to the desired solution. In this 
communication, models with output error (OE) structures 
and dedicated minimization algorithms are used. The main 
interest in using OE identification algorithms is to provide 
asymptotically unbiased parameter estimation (Ljung, 
1999).. Unfortunately, this property is achieved at the cost 
of the minimization of a non-linear quadratic criteria, 
which generally leads to a non-uniqueness of the optimum 
(Pronzato, 2001). This fundamental problem can be solved 
partially by initializing these algorithms with the help of a 
model identified using an error equation technique (Ljung, 
1999). In this paper, this initial step is realized using the 
prediction error method (PEM) (Ljung, 1999). Combining 
the PEM and the OE identification algorithm, the 
convergence towards the global optimum of the minimized 
cost function is ensured with high probability. 
 In order to explain the basic idea of the OE algorithm 
and make the notations clearer, consider the generic single 
input single output (SISO) relation 
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the vector of the system’s parameters to estimate and θ̂  an 

estimation of θ . Assuming that an initial vector θ̂  is 
available1, the model output response due to an input u  

can be simulated easily. Noting by ŷ  this simulated 

output, the residuals can be constructed 
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and the quadratic criterion can be calculated 
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1 This initial vector is obtained by using PEM. 

The optimal value of θ  is obtained by minimizing the 

quadratic cost function J . Since ŷ  is non-linear in the 

parameters θ̂ , J  has to be minimized iteratively via a 
non-linear programming algorithm. For this purpose, the 
Marquardt’s algorithm (Marquardt, 1963) can be used. 
This algorithm estimates θ  iteratively as follows 
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This algorithm ensures robust convergence, even with a 
bad initialization of θ . Fundamentally, this technique is 
based on the gradient and hessian calculation. These 
functions are dependant on the numerical integration of the 
sensitivity functions kσ . The sensitivity functions can be 

efficiently integrated by simulating a set of state-space 
models (see (Lee and Poolla, 1999) for details about this 
smart numerical method). 
 Applying this algorithm to the I/O data related to Eq. 
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the LTI transfer functions )( pH nl , { }hcn ,, ∈l  can be 

estimated for each operating point κ . 
Interpolation procedure 
 Assuming that q  sets of four LTI transfer functions 

{ } { }hcnn pH ,,)( ∈ll  (corresponding to q  operating points) are 

available, the interpolation of the identified parameters can 
be examined. In fact, the same procedure is used for each 

parameter nlγ , { }hcn ,, ∈l  (see Eq. (14)) and will be 

explained only for this generic notation. Assume that the 
local experiments have been carried out for constant 
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Since all the data involved in this least squares problem are 

noise-free, the estimated parameters jα̂  are consistent 

using a classic least squares algorithms (see, e.g., (Ljung, 
1999) for details about linear regression). 

As soon as all the coefficients jα  for each parameter 

nlγ , { }hcn ,, ∈l  are available, the LPV structure of the 

model can be built. 

Output error LTI model identification of )( pG nl , 

{ }hcn ,, ∈l  

The last step of the identification problem concerns the 
estimation of the parameters of the transfer functions 

)( pG nl , { }hcn ,, ∈l , relating the cold and hot output 

temperatures and the cold and hot mass flow rates. To 
reach this goal, two ways can be suggested.  

The first one, applied in this communication, assumes 

that the inputs 
icT  and 

ihT  can be controlled and fixed 

constant and the mass flow rates cm&  and hm&  persistently 

excited. Then, as in the previous case, the effect of 

)( pH nl , { }hcn ,, ∈l , on the dynamics of the system is 

null and can be easily removed during the data treatment 
phase. Hence, the system behaviour is governed by the 
following relations 
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Again, an OE algorithm can be used to estimate the 

parameters of the LTI transfer functions )( pG nl , 

{ }hcn ,, ∈l . 

When the inputs 
icT  and 

ihT  cannot be held as 

constant values, the parameters of )( pG nl , { }hcn ,, ∈l  

can be computed by following a three-step procedure 

1. knowing )( pH nl , { }hcn ,, ∈l  and the inputs 

icT  and 
ihT , simulate the corresponding 

temperatures outputs using Eq. (15)-(16), 
2. remove these simulated outputs from the system 

outputs acquired during the global experiment, 

3. estimate the LTI transfer functions )( pG nl , 

{ }hcn ,, ∈l  from these modified outputs and the 

mass flow rates inputs by using, e.g., an OE 
algorithm. 

 
RESULTS 
 The identification procedure described beforehand is 
now applied on I/O data simulated from the cross heat 
exchanger simulator described in the second Section. 

Firstly, 49 local experiments; corresponding to 77×  

constant couples { } [ ] [ ]3.1:1.0:7.03.1:1.0:7.0, ×∈hc mm &&  

are carried out. For each local experiment, (persistently 
excited) cold and hot temperatures inputs are applied. 

These inputs are built using splines, centred around 20°C 
for the cold side and 38°C for the hot side, with frequency 
changes chosen with respect to the transient dynamic of the 
system (see Fig. 2). In order to take account the 
measurement disturbances classically encountered in 
practice, two zero-mean white Gaussian noises, with noise-
signal ratios equal to 20dB, are added on the simulated 

outputs 
0cT  and 

0hT . 

The first step is the data treatment. After removing the 
means of each local experiment I/O data set, the time-delay 
is cancelled by shifting the inputs with respect to the values 

of cδ  and hδ  computable for constant cm&  and hm&  with 

Eq. (11). 
 

0 50 100 150 200 250 300
15

20

25

30

35

40

45

Time (s)

In
le
t
te
m
p
er
a
tu
re
s
T
c
i
an
d
T
h
i

 

 

Tci

Thi

0 50 100 150 200 250 300
18

20

22

24

26

28

30

32

34

36

38

Time (s)

O
u
tl
et
te
m
p
er
a
tu
re
s
T
c
o
a
n
d
T
h
o

 

 

Tco
Tho

 
Fig. 2 Example of I/O data. 9.0=cm&  kg/s and 1.1=hm&  

kg/s. 
Then, the OE algorithm, initialized with the PEM 

algorithm, is applied on these treated I/O data to get the 
parameters of the 196 local LTI transfer functions 

)( pH nl , { }hcn ,, ∈l . These models are validated on a 

second set of noise-free I/O data (see Fig. 3). The fit given 
on Figure is computed as follows: 
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Fig. 3 Validation of the OE model. 9.0=cm&  kg/s and 

1.1=hm&  kg/s. 

 
Having access to the parameters of these 196 LTI 

models, the interpolation step can be performed. To justify 
the use of second order polynomials (see Eq. (13)), the 

evolution of the static gain pK  and the damping ratio ς  
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with respect to cm&  and hm&  are plotted in Figure 4. It is 

quite obvious that quadratic functions are sufficient to fit 
these curves. To compute the coefficients of these 
functions, Eq. (27), associated with a classic least squares 
algorithm, is used. Figure 5 illustrates the efficiency of this 
approach on a particular parameter. 
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ṁh = 0.7
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D
am
p
in
g
ra
ti
o
ζ
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Fig. 4 Evolution of pK  and ς  with respect to { cm& , hm& }. 

 
The last step consists in validating the ensuing LPV 

model. For that, three situations are analysed. Firstly, the 
same conditions as in the previous validation step are used, 
i.e., a new set of noise-free I/O data corresponding to 
constant mass flow rates values are probed. Again, the fit is 
greater than 80% (see Fig. 6). Then, this LPV model is 
tested with 5.0=cm&  kg/s and 5.1=hm&  kg/s, i.e., values 

out of the range used during the identification phase. The 
fit values given in Figure 7 indicate that the LPV model 
performs quite well. 

Finally, specifications corresponding to 9.0=cm&  kg/s 

and 8.0=hm&  kg/s for 50<t , 2.1=hm&  kg/s for 50>t  

are applied. In this case (see Fig. 8), the fit is highly lower 

after the hm&  change. Thus, a direct relation between the 

outputs 
0cT  and 

0hT  and the mass flow rates seems to be 

necessary. This is done by identifying the transfer 

functions )( pG nl , { }hcn ,, ∈l . 
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Fig. 6 Validation of the LPV model. 9.0=cm&  kg/s and 

1.1=hm&  kg/s. 
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Fig. 7 Validation of the LPV model. 5.0=cm&  kg/s and 

5.1=hm&  kg/s. 
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Fig. 8 Validation of the LPV model. 9.0=cm&  kg/s and 

8.0=hm&  kg/s for 50<t , 2.1=hm&  kg/s for 50>t . 
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Fig. 9 I/O data for the validation of the global model. 
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Fig. 10 Validation of the global model. 
 

Adding these LTI transfer functions to the LPV 
structure identified previously, the global model is able to 
reproduce the dynamical behaviour of the simulator for 

time-varying 
icT , 

ihT , cm&  and hm& , as shown in Figure 

10. 
The last experimental result concerns the fouling 

detection. The approach considered in this communication 
consists in comparing the outputs of a reference model, 
identified from clean I/O data, with the outputs of the 
system under fouling influence. To simulate fouling, the 

thermal conductivity of the hot side hh  is continuously 

decreased (see Fig. 11). More precisely, in order to be sure 
that the evolution of the chosen detection signal is due to 
fouling and not, e.g., transient behaviour, the data base is 
composed of two sets: the first one corresponds to a clean 
period, the second one to the progressively fouled heat 
exchanger. 

 

 
Fig. 11 Evolution of the hot side thermal conductivity. 
 

 
Fig. 12 Evolution of the hot normalized error for the cold 
and hot sides. 
 

As shown in Figure 12, the normalized errors on the 
hot and cold temperatures evolve as soon as the hot 
thermal conductivity decreases (instant 50). Using a 
particular statistical test, such as, e.g., the CUSUM test 

(see, e.g., (Basseville and Nikiforov, 1993)), fouling can 
be easily detected. 
 

Remark: Notice that the most difficult part of this 
study is the determination of a reliable but easy-tuning 
model of the system. As soon as an accurate model is 
available, the problem of fouling detection is only related 
to the choice of the reliable signal(s) leading to fouling 
detection (here the system outputs), then the statistical test 
to apply in order to warn the user as soon as fouling is 
occurring. This last problem can be solved by applying the 
test the user is used. 
 
CONCLUSIONS 

In this communication, the problem of identifying a 
cross flow heat exchanger has been considered. More 
precisely, a particular model structure, named linear 
parameter-varying model, has been used. By this way, the 
identified model has been able to efficiently reproduce the 
dynamical behaviour of the non-linear cross flow heat 
exchanger without requiring complex algorithms for non-
linear identification. For that, a local experiments 
procedure has been carried out. Based on I/O generated 
from a reliable cross heat exchanger simulator, the 
identification procedure proposed in this paper has shown 
interesting performances which lead to believe that it can 
be surely extended to data acquired from a real cross flow 
heat exchanger. This problem will be addressed in the 
futures works. 
 
NOMENCLATURE 
c  specific heat, J/kg K 

Co Courant number, dimensionless 

d  passage thickness, m 

H  heat exchanger height, m 
m&  mass flow rate , kg/s 
p  laplace transform symbol, dimensionless 

t  time, s 

T  temperature, K 
U  overall heat transfer coefficient, W/m2 K 

W  heat exchanger width, m 
x  spatial dimension, m 
y  spatial dimension, m 

δ  time-delay, s 

∆  difference operator, dimensionless 
ρ  density, kg/m3 

 
Subscript 
c  cold 

h  hot 
i   input 
o  output 
s  steel 
 
Superscript 
j  timestep 
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