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ABSTRACT 

This work investigates the use of Artificial 

Neural Networks ANN to predict fouling in hybrid 

cooling towers, aiming to enhance their efficiency 

sustainability. Fouling, which impairs heat transfer 

and maintenance cost, is a significant challenge in 

cooling systems. The aim of this study is to improve 

the efficiency and long-term viability of hybrid 

cooling tower systems through the utilization of 

predictive models powered by artificial intelligence. 

The present study employs data obtained from a 

dynamic fouling monitor system at  the Green 

Energy Park in Benguerir, Morocco, analyzing the 

fouling behavior of different surface materials under 

both dry and wet conditions. The study compared 

multiple modeling methods, including Multiple 

Linear Regression (MLR), MLR with interaction 

(MLRWI), Response Surface Methodology (RSM), 

and ANNs. The results reveal that the ANNs model 

demonstrated a higher accuracy achieving an R² 

value of 0.724 and a remarkable RMSE indicator of 

0.06 outperforming the other models. The study 

underscores the potential of  (AI) models to improve 

the prediction of fouling, hereby optimizing the 

performance and the efficiency of hybrid cooling 

tower systems. 

INTRODUCTION 

Nowadays, solar energy gets the scientific and 

governmental communities interest as a promising 

alternative to fossil fuel resources. In the near future 

2050, this  source of energy will provide 8-15 % of 

the worldwide electricity demand[1].This is thanks 

to its clean and disposable production of electricity 

using concentrated solar power (CSP) technology 

coupled with thermal energy storage. In that way, it 

provides the needed heat supply to the steam turbine 

with zero greenhouse gas emissions as it was the 

case for conventional thermoelectric baseload power 

plants. However, the high cooling water 

consumption of CSP plants presents a big challenge 

against its viability in the energy market, especially 

in arid regions: in fact, the steam turbine exhaust 

should be condensed in order to be recirculated in a 

closed circuit of the Rankine steam cycle. To 

overcome this technical challenge, a dry cooling 

system was recommended when CSP plants were 

installed in regions with high DNI and poor cooling 

water resources[2]. It reduces the annual water 

consumption by 95%[3]. Howbeit, these air-cooling 

systems have low efficiency compared to wet 

cooling system, and their fans consume a 

considerable amount of electricity, which may 

impact negatively the CSP plant LCOE as it may be 

illustrated by the following findings: (1) the 

increased ambient temperature causes a great 

decrease in heat rejection efficiency[4], (2) a 20% 

net power reduction had been reached during hot 

days in summer using dry cooling[5], (3) a  windy 

conditions may affect the air cooled steam 

condenser performance[6] and besides (4) some 

CSP plants with low-temperature resources (e.g. 

low-concentration CSP plants and geothermal 

plants) may experience a 50% net power reduction 

at high ambient temperatures[7]. Thus, wet-cooling 

towers are used to remain the economical choice. 

However, when water availability decreases its cost 

and environmental problems related to its 

exploitation increase dramatically[8]. Thus, the vital 

challenge to maintain an adequate supply of 

appropriate makeup water at a rational cost[9], [10].  

Recently, as a compromise between the cooling 

system efficiency and water resources preservation, 

hybrid dry-wet cooling systems are 

investigated[11]. Their approach consists at 

improving the heat transfer by using both sensible 

and latent heat transfer, the deluge cooling is 

achieved by exposing the heat transfer bundles to a 

large amount of water to cool the high ambient 

temperature at hot days. Therefore, their main 

purposes are the enhancement of the low efficiency 

of dry cooling systems from one side, and to reduce 

water consumption of wet cooling systems from the 

other side. From 30 to 98% reduction in water had 

been realized using hybrid cooling system compared 

to wet cooling systems[12]. The switching between 

the wet and dry cooling in a hybrid cooling tower 

experience the bare bundles to a severe fouling over 

time.  

Fouling can be defined as the accumulation of 

unwanted deposits at the heat surface exchanger, 

which reduces by time the efficiency of the tower. 
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Researchers categorized the waterside fouling into 

six mechanisms: scaling (if not crystallization or 

precipitation), corrosion, particulates,  biofouling, 

freezing and chemical reactions fouling [13], [14] 

and described the basic behavior of the fouling 

process using a deposition and removal rate[15], 

[16]. 

Most parameter that will reproduce the variety 

of fouling problems is the wide spectrum of the 

water quality. The emphasis in cooling water 

management in most industrial cooling systems is on 

quantity rather than quality. Therefore, to combat 

fouling deposits it is requested for cooling system to 

access for treatment. Seawater and rivers involve a 

potential fouling at their mineral composition and 

usually these natural resources fitted the cooling 

systems. The most common scaling deposition on 

heat transfer is Calcium carbonate (CaCo3), 

Magnesium sulfate (MgSO4), also affected to minor 

extents by other substances such as Iron (Fe), silica 

(Si), sodium chloride (NaCl). In this light Tubaman 

and Zdiunk and Zaza et al [13], [17], [18] conducted 

a survey on the water quality to an actual cooling 

tower to understand the factor that affects the 

cooling water quality.  

Many experimental studies had been conducted 

for a long-term fouling test to quantify the fouling. 

Rebas [19] manner a survey of condensers over one 

year operating for three types of enhanced tubes. He 

concluded that the enhanced tubes had significant 

fouling rates more than the plain one. A smooth tube 

and plate heat exchanger in a cooling tower system 

was tested by Wu[20] to conclude that the fouling 

deposit is not uniform and that the fouling is present 

highly at outlet section than the inlet one and the 

calcium carbonate was the most fouling deposit.  

 In hybrid cooling systems, fouling phenomena 

is challenging because of the alternating wet-dry 

modes, which generate new chemical and physical 

deposition mechanisms different from those related 

to fouling in wet only cooling systems. Thus, the 

fouling problem should be investigated and 

understood in this novel environment in order to 

collect a strong knowledge to deal with it[21], [22], 

[23]. Despite the critical importance of addressing 

fouling in these systems, the literature remains 

sparse, particularly concerning hybrid cooling 

towers designed for concentrated solar power (CSP) 

plants. Previous studies, including those conducted 

by the authors, have made advancements in 

experimentally examining the fouling effects on 

these systems, focusing on various materials such as 

galvanized steel and polymers[24], [25]. However, 

these efforts primarily concentrated on 

understanding the fouling behavior and material 

properties rather than predicting and mitigating 

fouling through advanced techniques. This paper 

aims to bridge this gap by integrating Artificial 

Intelligence (AI) into the analysis, providing a novel 

approach to predicting fouling rates and optimizing 

the performance of hybrid cooling towers in CSP 

plants. Through the development of AI models, this 

research seeks to enhance the predictive accuracy 

and operational efficiency, thereby offering new 

insights and potential solutions for maintaining the 

sustainability and effectiveness of these systems.  

The integration of artificial intelligence (AI) for 

the prediction of fouling in heat exchangers 

represents a paradigm shift in the realm of 

maintenance and operational optimization[26]. This 

research endeavors to deploy machine learning 

algorithms to analyze historical operational data, 

discerning intricate patterns and trends associated 

with fouling incidents[27]. The research 

methodology involves the comprehensive collection 

of datasets, encompassing vital parameters such as 

temperatures, flow rates, pressure differentials, and 

fluid characteristics. Rigorous preprocessing 

techniques are subsequently applied to ensure data 

quality, involving the removal of outliers and 

addressing missing values. The process of feature 

engineering is then employed to identify and 

incorporate crucial variables influencing fouling 

behavior. By leveraging these advanced techniques, 

AI models can learn from past fouling incidents and 

make informed predictions about future 

occurrences. This predictive capability not only 

facilitates proactive maintenance strategies but also 

enhances the overall efficiency and performance of 

heat exchangers, thereby mitigating the adverse 

impacts of fouling. The research contributes to the 

evolving landscape of sustainable and optimized 

heat exchange systems through the judicious 

integration of AI for fouling prediction. 

The paper is organized as follows: Initially, a 

comprehensive overview of the experimental test rig 

and its operational parameters is provided. 

Subsequently, the focus shifts to the analysis of 

modeling results, utilizing statistical techniques 

such as ANOVA and multiple linear regression 

(MLR) to unveil correlations between 

environmental variables and thermal fouling 

resistance. Following this, the paper introduces the 

application of Artificial Neural Networks (ANN) for 

predictive modeling. Two distinct implementations 

are examined: one utilizing MATLAB, and the other 

employing Python with the Keras framework. 

TEST APPARAUTS AND METHOD 

Experimental setup  

The fouling test rig is a novel experiment to 

investigate the fouling under hybrid cooling 

(dry/wet) mode. The system contained two tanks to 

feed the test with cold and hot water, an electrical 

resistance is used to heat the water in order to floated 

inside the tubes. The deluge water is floated over the 

heated tubes and a tower featured sprayers to inject 

the cold water through heated tubes and the air is 

drowned thanks to an axial flow placed at the top of 

the tower. Fig. 1. The test rig is used to identify 
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fouling under accelerated conditions, which are 

accomplished by recycling hot water under 

temperature conditions (of 60 °C) (see Table 1). 

Thermocouple’s props inside the tube are connected 

to measure the temperature each min (hot water 

inside the tube, air temperature and deluge 

temperature). To amplify potential differences in 

fouling characteristics, tube materials are made of 

polymer and galvanized steel. The hot water is 

circulated from a hot water tank using a centrifugal 

pump. A hot water bath (500L) is used to maintain 

hot temperature thanks to a resistance heater (208 V, 

2000 W). Inside the tower simultaneous modes are 

functioning; the wet mode; during 5 min the deluge 

water contained specific mineral salts is agitated and 

drained into sprayers to distribute the deluge water 

through tested tubes. During 10 min the dry mode 

operating by aspiring the air from the bottom to the 

top by virtue of an axial fan[24]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Schematic diagram of the fouling test rig 

 

Table 1. Test rig parameter and operating 

conditions 

Parameter  Value 

Deluge water flow rate  2.5 ± 0.1gal/min  

Sump volume  150 l 

Deluge water sub-cycle 

time 

Wet 5-Rince 0-Dry 

10 

Heated inlet temperatures 60± 0.1 °C 

 

Preparation of test solutions and experimental 

methods  

The key part of this novel is a specific deluge 

water hardens that established to simulated the 

industrials case. The water composition salts are 

presented at Table 2  The most fouled mineral is 

calcium carbonite. 

Fouling resistance  

Each fouling test is operated at constant heat 

flux, velocity and bulk temperature.  Using 

temperatures measured by the thermocouples, the 

heat transfer (Qhw) was determined by:  

𝑄ℎ𝑤 = 𝑚𝑡𝑤 × 𝐶𝑝𝑡𝑤 × (𝑇𝑖𝑛ℎ − 𝑇𝑜𝑢𝑡ℎ) (1)   

Where 𝑚𝑡𝑤 is mass  flow of  the hot water 

inside the tubes (kg/s); 𝐶𝑝𝑡𝑤 is the specific heat  𝑇𝑖𝑛ℎ 

and 𝑇𝑜𝑢𝑡ℎ  are the hot water temperatures at the inlet 

and the outlet of the tube   

Fouling resistance at time t (Rf) can be resolute 

by heat transfer coefficients using Eq (2)  

 𝑅𝑓 =
1

𝑈𝐴𝑓
−

1

𝑈𝐴𝑖
 (2) Where Ut (kW/m2. K) is the 

overall heat transfer coefficient at time t, U0 is the 

initial (t = 0) overall heat transfer coefficient for a 

clean probe.  By monitoring temperatures (Ta, Thwo, 

Thwi), fouling resistance Rf at each time point can be 

calculated.  During each test, fouling data (Tb, Tw 

and power input) are recorded every 1 min using a 

data logger.  

Anticipating the outlet hot water temperature 

Thwo is crucial, as it offers valuable insights into 

fouling resistance. Consequently, within the 

modeling section, various methods will be employed 

to predict Thwo. This approach aims to provide a 

comprehensive understanding of the impact of 

fouling and assess the efficiency of the hybrid 

cooling tower. 

A validation process was conducted to ensure 

the reliability of the results. Potential limitations of 

the setup included possible measurement 

inaccuracies arising from sensor precision and the 

impact of external factors that were not entirely 

controlled within the experimental environment. To 

address these concerns, a comprehensive 

uncertainty analysis was performed in an earlier 

work[24], which enhanced the robustness and 

credibility of the findings 

 

Table 2. Mineral salt compositions 

Mineral salts  Value(mg/l) 

calcium carbonite (CaCo3 ) 390  

Magnesium sulphate (MgSO4)  220 

Iron oxides(FeO) 500 

Sodium chloride (Nacl) 1 

Kaolinite (AL2Si2O5(OH)4) 1000 

MODELING RESULTS  

ANOVA was used to estimate statistical 

parameters and unveil relationships between 

environmental variables and the thermal fouling 

resistance. This analysis involved developing 

multiple models: linear regression (MLR and 

MLRWI), a mathematical model using response 

surface methodology (RSM), and assessing their 

accuracy with R2, adj-R2, and RMSE. Additionally, 

an artificial neural network (ANN) was utilized to 

address the intricate prediction of heat transfer 

efficiency of the hybrid cooling tower based on 

environmental factors. 

Multiple linear regression models (MLR) 

The relationship between the hot water outlet 

temperature (Thwo) and the operating and 

Polymer  

1 

2 

3 

4 

Galvanized 

steel  

1 

2 

3 

4 
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environmental conditions where cooling towers are 

situated was explored by modeling against factors 

such as ambient air temperature (Ta), humidity(Rh), 

hot water flow (Fc), hot water inlet 

temperature(Thwi)), deluge water flow (Fdw), 

deluge water temperature (Tdw). Employing a 

Multi-variable linear regression (stepwise method) 

with a month’s worth of data set a benchmark for 

this analysis. This regression method predicts 

outcomes based on diverse parameters, enabling an 

in-depth examination of how each operating and 

environmental factors influences the overall 

variance. Notably, this approach encompasses two 

types: simple regression and regression with 

interaction. 

The equation of a simple regression is given by:  

Yi = β0 + β1xi1 + β2xi2 + ... + βnxin                       (3) 

where: β0, β1, β2, … βn are the model parameters. 

Multiple linear regression alone doesn't 

sufficiently capture the intricate interactions among 

the data parameters needed for accurate prediction. 

To better comprehend the interplay between 

environmental data, multiple linear regression with 

interaction (MLRWI) was employed. This approach 

provides a more comprehensive insight into the 

combinations of environmental factors. The 

MLRWI equation is formulated as follows: 

SR = β0 + β1x1β2x2 + ... βn-1xn-1βnxn                     (4) 

As results, the simple regression model has a lower 

R²=0.48 while the MLR has R²=0.507, which will be 

explained that the interaction between the 

parameters has a great impact on the output. As it 

can be seen from the Table 3, the deluge water 

temperature (Tdw) has a great effect on Rh (P-

value<0.01) as well as on the hot water flow. Also 

the ambient and the relative humidity affect strongly 

on the output.  

Table 3. The ANOVA results for multiple linear 

regression model with interaction. 

Parametrs P value  Remarks  

Fc*Td 0,650  

Fc*Ta 
 

 

Fc*Thwi 0,236  

Fc*Pa 
 

 

Fc*RH 0,872  

Fc*Flow 0,353  

Td*Ta 0,518  

Td*Thwi 0,337  

Td*Pa 
 

 

Td*RH 0,0100 Signifiant  

Td*Flow 0,0036 Signifiant 

Ta*Thwi 
 

 

Ta*Pa 
 

 

Ta*RH 0,0023 Signifiant 

Ta*Flow 0,220  

Thwi*Pa 
 

 

Thwi*RH 
 

 

Thwi*Flow 0,447  

Pa*RH 
 

 

Pa*Flow 
 

 

RH*Flow 0,148  

ANN with Matlab 

 

The modeling process was carried out with the 

datasets fed to the neural network using MATLAB 

software. The model framework was designed as 

eight input variables (Tdw, Tdi, Ta, Thwi, Pa, Rh, 

Flow, Thwo _5) while the Thwo5is the output hot 

water taking into consideration the 5min results 

before) with one output parameter as the Thwout. 

The processing parameter settings for the neural 

network model are presented in  Fig. 2 which show 

a 8-10-1 two-layer feed-forward network with a 

tansig activation function (AF) for the hidden 

neurons and linear AF output neurons. This can 

perform multidimensional mapping to solve 

complex system solutions. In order to determine the 

best-performing n-neurons, mean squared error 

(MSE) and R-values, evaluation criteria were used, 

which revealed that 10 neurons produced optimal 

results. 

The Neural Net Fitting tool in MATLAB was 

used to address a data adjustment issue by the 

implementation of a two-layer feed-forward 

network, constructed using the Levenberg-

Marquardt algorithm. The process involves data 

selection, partitioning into training, validation, and 

testing sets, network architecture design, and 

network shaping. 

 

The Levenberg-Marquardt algorithm (LM) is 

an enhanced version of the classical Gauss-Newton 

method. It is commonly employed for solving 

regression problems involving smaller nonlinear 

squares. LM is preferred over other general 

optimization algorithms, such as the quasi-Newton 

method or the simplex method, due to its superior 

effectiveness. 

 

Fig. 2. Setting parameters of the used Model. 

 

The average square error refers to the squared 

discrepancy between the predicted values of a model 

and the desired or target values. The module 

presents the most favorable Mean Squared Error 

(MSE) values, namely and MSE = 1.82, based on the  

The data set under consideration has a strong 

regression relationship (R = 0.92982) with respect to 
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the variable Thwo_5. This indicates that the eight 

independent variables (Tdw, Tdi, Ta, Thwi, Pa, Rh, 

Flow, Thwo _5) effectively predict the dependent 

variable (Thwo). 

The mean square error (MSE) was the criteria 

tool used to evaluate the model’s performance while 

randomly selecting different hidden neuron 

numbers, activation function parameters and 

training algorithms for validation of the ANN 

network, as shown in Fig. 3.The graphical results 

indicated the best validation performance of 2.3555 

at epoch 7 for the optimized network (8-10-1). The 

results indicated a satisfactory performance of the 

ANN model. It was capable of predicting the target 

response parameters accurately by generalizing the 

sets of complex input variables with minimum error 

 

Fig. 3. Validation performance of the ANN. 

 

ANN with Python  

Artificial Neural Networks (ANN) draw 

inspiration from the intricate neural networks found 

in the human brain. Typically, an ANN model 

comprises three primary layers—input, hidden, and 

output—interconnected through weight connections 

as shown in Fig. 4. The structure of these 

connections is tuned based on experience, enabling 

neural networks to adapt to inputs and develop 

learning capabilities. ANNs exhibit diverse 

structures and functionalities, including radial basis 

functions, backpropagation, recurrent networks, 

feed-forward, etc. The optimal structure depends on 

the specific problem under examination. 

 

 

Fig. 4. Artificial Neural Network architecture. 

 

Selecting the optimal number of neurons in the 

hidden layer for optimal network performance lacks 

a systematic approach. Researchers commonly 

employ a trial-and-error method to determine the 

appropriate number of neurons in the hidden layers, 

recognizing the importance of customization based 

on the specific problem at hand. 

The present study used a multilayer perception 

with a single hidden layer as the artificial neural 

network (ANN) model. Several training algorithms 

were examined and reviewed to determine the most 

suitable one for addressing the fouling phenomena 

and achieving optimal performance. As a result of 

this evaluation, the Keras training method was 

selected [28]. The artificial neural network (ANN) 

model used in this study consisted of three layers: an 

input layer, a hidden layer, and an output layer. In 

addition, the use of the sigmoid transfer function 

was observed in the output layer, specifically to 

accommodate the prediction of the thermal 

resistance of the fouling. Conversely, the hyperbolic 

tangent transfer function was chosen for both the 

input and hidden layers. The input layer consisted of 

seven neurons that represented (Tdw, Tdi, Ta, Thwi, 

Pa, Rh, Flow. 

Several examples were explored and assessed 

by altering the number of hidden layer neurons from 

3 to 12 with randomly initialized weights to find the 

ideal one and prevent overfitting. To optimize 

performance, the ANN model was trained and 

assessed 10 times for each hidden layer neuron 

count[29]. The best-performing ANN model with 10 

neurons in the hidden layer was utilized to generate 

model outputs. The dataset had 80% for training, 

10% for validating, and 10% for testing. 

Furthermore, the accuracy level and 

performance of the created model were assessed 

using four primary statistical error indices: Root 

Mean Square Error (RMSE), Mean Square Error 

(MSE), Mean Absolute Error (MAE), and 

regression coefficient (R2). The statistical formulae 

for these indicators may be found in the references 

cited as [30]. Optimal model performance is attained 

when these errors approach zero, hence yielding a 

high level of accuracy, and when the R2 parameter 

approaches 1. The dataset used in this study included 

observations taken each minute for one month, 

while the totaling 44640 instances. These 

observations were employed in the current model to 

forecast the outlet hot water temperature Thwo, while 

considering the operating and the environmental 

factors.  

     The findings from the employed artificial neural 

network (ANN) model highlight a robust correlation 
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with the dataset, explaining approximately 81% of 

the variance (MAE=0.054256 , MSE=0.004109, 

RMSE= 0.064105, R2 = 0.724, p < 0.05). This 

underscores the ANN model's capacity to 

comprehensively understand the interactions among 

input variables, leading to more accurate predictions 

of daily Thwo with diminished biases compared to 

the multiple linear regression (MLR) model. 

Additionally, the ANN model demonstrates a 

substantial reduction of over 40% (R²=0.724) in 

comparison to the MLR model, as evidenced by the 

lower root mean square error (R² = 0.507). 

 

Fig. 5 illustrates the regression plots of the 

proposed model, showcasing the capabilities of the 

Artificial Neural Network (ANN) model in terms of 

rapid processing and superior accuracy. The results 

offer a comparative analysis with linear models, 

emphasizing that ANNs serve as potentially 

effective tools for resolving complex scenarios and 

achieving high R2 values. However, the 

establishment of a robust ANN structure, along with 

crucial steps such as pre-processing techniques, 

dataset augmentation, and incorporation of relevant 

features, is vital. Attention to these criteria is 

essential to develop a highly accurate model while 

preventing overfitting, requiring the implementation 

of suitable strategies and techniques. 

Fig. 5. Regression plots of the proposed ANN model 

for All data. 

CONCLUSION 

 

In conclusion, this study utilized three distinct 

models, namely Multiple Linear Regression (MLR), 

MATLAB-based Artificial Neural Networks 

(ANN), and Python-based ANN with the Keras 

framework, to predict hot water outlet temperature 

(Thwo) in cooling tower systems. The MLR model, 

serving as a benchmark, explored both simple and 

multiple linear regression with interaction 

(MLRWI), highlighting the significance of 

interactions with a higher R² (0.507). Key 

influencers on Thwo included deluge water 

temperature (Tdw), ambient temperature (Ta), and 

relative humidity (Rh). The MATLAB-based ANN, 

an 8-10-1 two-layer feed-forward network, 

demonstrated a strong regression relationship (R = 

0.92982) with Thwo_5, using the Levenberg-

Marquardt algorithm and 10 hidden layer neurons. 

Meanwhile, the Python-based ANN with Keras, 

optimized with varying hidden layer neurons, 

outperformed MLR with an R² of 0.724. These ANN 

models showcased a robust ability to comprehend 

interactions among input variables, resulting in 

accurate predictions and a remarkable 40% 

reduction in R² compared to MLR. The study 

underscores the effectiveness of ANN models, 

particularly when implemented with Python and 

Keras, as powerful tools for predicting hot water 

outlet temperature in cooling tower systems, 

emphasizing their potential in complex scenario 

resolution and achieving high R² values. To 

conclude, the comparison of modeling 

approaches—MLR, MLRWI, RSM, and ANN—

demonstrated that the Artificial Neural Network 

(ANN) significantly outperformed the other models 

in predicting fouling behavior. This can be attributed 

to ANN's ability to capture complex, non-linear 

relationships between variables, which are prevalent 

in fouling dynamics. Unlike MLR and RSM, which 

are limited by their linear assumptions, ANN's 

flexibility and adaptability allow it to model intricate 

patterns and interactions more effectively. 

Consequently, ANN provides more accurate and 

robust predictions, highlighting its advantages for 

addressing the non-linear and multifaceted nature of 

fouling in hybrid cooling towers. 

NOMENCLATURE 

A Area m2 

Cp  Specific heat of hot water, kJ/ (kg K) 

Q    Heat transfer rate, W 

R    Thermal resistance, m2 K/W 

T Temperature, °C 

Subscript 

h hot 

o outer 

i inlet 

d     deluge 

w     water 

f       fouling 
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