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ABSTRACT 

Crystallisation fouling is detrimental to many 

industrial processes. The persistence of fouling is 

determined by the balance of attachment and 

detachment processes. In most prediction models, 

however, detachment processes are either ignored or 

oversimplified.  

In this work, we present a review of detachment 

processes in crystallisation fouling models. We 

show that experimental studies strongly suggest that 

detachment processes must be considered. Next, we 

review the properties of the fouling interface and 

discuss the influence of surface morphology and 

composition. 

We also evaluate the influence of fluid flow 

properties on fouling rates, and address the 

contradictory observations in the literature. Finally, 

we show how detachment processes can be 

intentionally enhanced as part of fouling mitigation 

protocols.  

We conclude that new prediction models must 

account for detachment processes or ensure that they 

are negligible under the process conditions that are 

being simulated. 

INTRODUCTION 

 

Fouling can be understood through five distinct 

subprocesses: initiation, transport, attachment, 

detachment, and ageing 1. While initiation, 

transport, and attachment are commonly 

incorporated into models, detachment and ageing 

are often neglected. It has been shown that an 

incorrect understanding of the detachment term can 

lead to inaccurate predictions of the net deposition 

rates 2.  

 

Most implementations of the detachment term 

(𝑚𝑑̇ ) in the literature are based on the interaction 

between the strength of the foulants (𝜎), and the 

stress exerted on them (𝜏) 3. 

 

𝑚𝑑̇ = 𝐶 
𝜏

𝜎
      (1) 

 

This model has been expanded to include 

properties such as density (𝜌𝑓), intercrystalline 

adhesion (𝑃), particle size (𝑑𝑝), temperature change 

Δ𝑇, density of the liquid (𝜌), thickness of the 

fouling layer (𝑥𝜃) and the velocity of the liquid (𝑤) 
4: 

 

𝑚𝑑̇ =
𝐾2

𝑃
𝜌𝑓(1 + 𝛿Δ𝑇)𝑑𝑝(𝜌2𝜂𝑔)

1

3𝑥𝜃𝑤2 (2) 

 

 Where 𝐾2 is a constant. The assumptions in 

the model, however, do not fully capture the 

complexities found in published experimental 

studies. These complexities include the dynamic 

effect of break-off 5, supersaturation-induced 

crystal resilience 6,7, and composite fouling 8,9. 

Existing models often do not account for 

properties such as crystal shape, surface roughness, 

and the adhesive strength of the foulant. 

Furthermore, a proper understanding the influence 

of shear forces arising from a process stream is 

limited.  

THE FOULING INTERFACE 

Surfaces play an important role in 

crystallisation fouling, as both their composition 

and morphology determine the affinity for fouling.  

 

Substrate-Foulant Interaction 

The interaction between the substrate (the 

surface being fouled) and foulants (the materials 

deposited on the surface) is multifaceted, involving 

both morphological (shape and structure) and 

energetic (forces and energies) aspects. These 

interactions are crucial to the detachment rate 

because they influence how strongly foulants 

adhere to the surface and their resilience against 

detachment processes. 

Substrate Composition 

The chemical composition of a surface 

significantly impacts its interaction with foulants. 

This composition determines the surface energy, 

which affects wetting properties and the adhesion 
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forces between the surface and foulants. High 

adhesion forces mean foulants are more likely to 

remain attached, making the surface more prone to 

fouling. Studies have shown that surface 

compositions can significantly influence fouling 

dynamics 10–14. 

Surface Morphology 

The physical structure of a surface, or its 

morphology, also plays a crucial role in fouling 5,15–

18. Surfaces with rough textures can provide more 

nucleation sites for foulant deposition 19, leading to 

increased fouling. However, the relationship 

between surface roughness and fouling is complex, 

with studies showing varying effects. While some 

studies show that increased surface roughness leads 

to more fouling due to  the increased availability of 

nucleation sites 20 and enhanced advection (fluid 

movement that can carry foulants to the surface) 5. 

Other studies have found that changes in roughness 

had minimal impact on deposition rates, suggesting 

that other factors might be at play 21,22. 

Composite Fouling 

Beyond the initial layer of deposition, the 

interactions between subsequent layers of foulants 

can significantly influence the overall fouling 

process. Multicomponent fouling layers are 

prevalent in industrial settings 23, and need to be 

better understood. The presence of multiple 

foulants can alter the adhesion strength and 

detachment rates of the fouling layer 8. For 

example, the sequence in which different foulants 

deposit can affect the overall adhesion of the layer, 

with certain combinations leading to enhanced 

deposition rates or increased detachment 8. 

Experimental studies have shown that mixed 

foulants can interact in ways that significantly alter 

fouling dynamics, underscoring the need for 

models that can account for these complex 

interactions. When crystallisation fouling and 

particulate fouling interact, fouling is influenced by 

dispersed particles acting as nucleation points 24. 

The interaction between particulates and crystals 

canaffects deposition rates based on size, 

composition, and shear stress 25. Currently, one 

model accounts for particulate fouling 26, however, 

it overlooks the impact of embedded particles on 

adhesion strength. Additionally, the interaction 

between biofilms and crystallisation fouling is 

complex, with biofilms potentially enhancing 

surface interaction with crystals 27–29. To our 

knowledge, no modelling attempts have been made 

to account for this effect. Understanding these 

fouling mechanisms is crucial to optimizing 

industrial processes and mitigating fouling-related 

problems. 

 

SHEAR FORCES EXERTED THROUGH 

FLOW 

Flow properties play a pivotal role in 

crystallisation fouling, as the forces exerted by the 

moving fluid on the fouled surface influence the 

detachment rates of foulants.  

Increased Deposition at Higher Flow Rates 

Experimental evidence indicates that an 

increase in flow velocity can lead to a higher rate 

of fouling deposition 10,30–32. This increase is 

primarily attributed to the increased transport of 

reactive substances to the surface, especially in 

systems where transport is the limiting factor. It is 

worth mentioning that this effect depends on the 

properties of the crystals being formed and the 

distribution of shear stress across the surface 5. 

Decreased Deposition at Higher Flow Rates 

Studies also show that increased flow 

velocities can reduce overall deposition rates 33–39. 

This reduction is attributed to an increase in shear 

forces that promote detachment of foulants from 

the surface. This reduction often exhibits an 

asymptotic behaviour 40,41, indicating a balance 

between deposition and detachment forces at 

certain flow rates. 

PROMOTING DETACHMENT 

Detachment processes can be effectively 

promoted in industrial settings by adjusting process 

parameters 42. This requires understanding the 

strength of the foulant and applying sufficient 

external shear forces to overcome it. We explore 

strategies to reduce adhesion strength and increase 

external forces to mitigate fouling. 

Engineered Surface Adhesion 

Modifying the adhesion properties of  a 

surface presents a proactive strategy to combat 

fouling 43. Techniques include employing magnetic 

slippery surfaces 44, low-surface energy coatings, 

and altering wetting behaviour 45 to reduce 

adhesion of foulants to the surface. Liquid-infused 

surfaces (LIS) offer excellent antifouling properties 

by enhancing the ability of surfaces to repel  

foulants, although their durability under operational 

conditions can be a concern 46. Advances in surface 

engineering, such as robust ferromagnetic coatings, 

have demonstrated significant reductions in fouling 

by lowering adhesion strength, enabling easier 

detachment at lower shear stresses 44. 

Shear Stress Modification 

Increasing shear stress is an effective method 

to promote the detachment of fouling deposits. This 

can be achieved through design modifications that 

create flow constrictions, alter linear velocities, or 

modify the solution's inherent shear stress. 

Techniques include: 

 



Heat Exchanger Fouling and Cleaning – 2024 

58 

ISBN: 978-0-9984188-3-4; Published online www.heatexchanger-fouling.com 

• Flow Field Alteration: The 

introduction of baffles or orifices can 

isolate and improve linear shear force, 

significantly reducing fouling 47,48. 

• Vibration-Induced Shear Stress: 

Applying vibratory shear-enhanced 

processes (VSEP) to systems such as 

membranes can effectively mitigate 

fouling, especially in handling softer 

foulants 49. 

• High-Pressure Injections: 

Employing high-pressure liquid 

injections or gas bursts can alter 

surface shear stresses, proving 

effective in removing even tenacious 

scales such as BaSO4  50. 

 

Practical Considerations for Industrial 

Application 

Although engineered surfaces and shear stress 

modifications offer promising avenues for fouling 

mitigation, their application must be tailored to the 

specific industrial context. Factors such as the 

nature of the foulant, operational conditions, and 

economic considerations are crucial in determining 

the most effective strategy. For instance, vibration-

induced shear stresses may be effective for soft 

scales, while harder scales might require more 

aggressive interventions like high-pressure liquid 

scouring. 

 

Additionally, the integration of these strategies 

requires evaluating their potential impact on system 

efficiency and maintenance requirements. The 

choice between surface engineering and shear 

stress modification will depend on the expected 

lifespan of the modification, the ease of 

implementation, and the overall cost-effectiveness 

of the solution. 

 

CONCLUSION 

We have presented an overview of the critical 

aspects of crystallisation fouling detachment, 

covering interactions at the surface level, the 

effects of flow dynamics,  and the strategies for 

promoting detachment processes.  

We explored substrate-foulant interactions and 

the importance of surface properties, such as 

composition and morphology, and demonstrated 

the need for precision in the design and selection of 

materials. We showed how flow velocity can affect 

fouling rates and how it can be used to mitigate 

fouling. 

We conclude that future models could improve 

accuracy through updating the detachment term.  
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