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ABSTRACT 

Experiments and fully resolved numerical 

simulations are reliable, yet costly ways of 

designing safe and efficient flushing processes. An 

alternative is the use of a simplified algebraic model. 

In this work a model previously developed by the 

present authors for combinations of fluids with 

identical properties is extended to different fluid 

properties of previous and flushing fluid. A realistic 

range of fluid properties is determined. The results 

from the simplified model are compared to highly 

resolved numerical data. The simplified model is 

able to predict the flushing process well, for phases 

were only the removal of previous fluid near the wall 

is relevant. This is achieved quickly, when the 

previous fluid has a lower apparent viscosity than 

the displacing one. In the opposite case, the 

prediction quality of the model for the preceding 

phase is low and other approaches should be 

considered. 

INTRODUCTION 

Flushing processes are used to clean closed 

equipment used in the production of liquid food 

products [1]. Due to hygienic risks and industry 

related restrictions, some products must not be 

cleaned using aqueous solutions. In the chocolate 

and lubricant manufacturing, for example, previous 

product is therefore cleaned from closed equipment 

using a second flushing product [2, 3]. The flushing 

process must be designed in such a way, that the 

product quality of both batches and in the case of 

chocolate the consumer safety can be ensured by the 

manufacturer. At the same time, using two valuable 

products in the flushing process, results in large 

economic losses, which in the case of lubricant 

manufacturing exceed one million US dollars per 

year for a typical large scale facility [3].  

Flushing processes can be divided into different 

phases [4–6]. At the beginning the entire domain, 

which is usually a pipe or a duct, is filled with 

previous product and the flushing fluid enters the 

domain through an inlet. During the first phase, 

called “core removal”, the previous product at the 

center of the domain is replaced by the flushing 

product. The remaining layer of previous fluid on 

the wall of the domain is removed in the subsequent 

phase called “layer removal” [6] or “film removal” 

[4, 5]. Palabiyik et al. [4, 5] identify a third phase, 

where the very thin film remaining on the wall 

breaks up and is removed in patches. Depending on 

the flow conditions and the cleaning system, which 

consists of the substrate, the previous and flushing 

fluid [7], the second and third phase may be 

modelled in numerical simulations using boundary 

condition cleaning models (BCCM) [8–13]. In the 

present work, the phases are named in accordance to 

Liebmann et al. [6]. 

Flushing processes are influenced by a variety 

of factors. The rheology of both fluids, their density 

and miscibility are among the important material 

properties that affect the flow. Further influencing 

factors include the geometry, the orientation of the 

flushed domain and the operating conditions, e.g., 

the Reynolds number of the flow and temperature. 

The removal of various fluids with non-

Newtonian behavior, e.g., yoghurt, apple sauce, 

toothpaste, hand cream, shampoo from a pipe using 

water as flushing fluid was studied by Palabiyik et 

al. [4, 5] experimentally. The flow of the flushing 

fluid was turbulent and a linear relationship between 

the dimensionless cleaning time and the ratio of the 

products yield stress and the wall shear stress was 

found. The dimensionless cleaning time was 

obtained from the cleaning time using the velocity 

of the fluid and the pipe diameter. It was also 

reported, that the prediction of the cleaning time 

based on dynamic viscosity alone revealed no clear 

relationship for the wide variety of fluids 

investigated [5]. 

Pelipenko et al. [14] investigated the 

displacement of drilling mud, spacer fluid, wash and 

cement slurry in a concentric annulus numerically. 

They developed a mathematical equation to model 

the movement of the interface of two Herschel-

Bulkley fluids in laminar flow. Because the gap of 

the concentric annulus was very small compared to 

the radii of the inner and outer cylinder, it was 

assumed, that the position of the interface at a given 

time is a function of the azimuthal and axial 

coordinate only. The resulting model explains the 
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intuitive understanding of the flow. However, it is 

only applicable to very thin annular gaps. 

Bakhtiyarov et al. [15] investigated the 

displacement of a Newtonian fluid by a non-

Newtonian fluid of the same density inside a 

horizontal pipe both theoretically and 

experimentally. A model to determine the time 

needed for the front to reach a given cross section 

was developed. This so called breakthrough time is 

influenced mainly by the viscosity ratio of the 

involved fluids, the imposed constant pressure 

gradient, the pipe dimensions and the rheology of 

the displacing fluid. The model agrees well with 

experimental data for cases where the viscosity of 

the previous fluid is smaller than the flushing fluids, 

but shows up to 20% error for cases, where the 

viscosities of previous and flushing fluid are 

reversed. 

Allouche et al. [16] investigated the 

displacement of two non-Newtonian Bingham fluids 

inside a plane channel numerically. They focused on 

cases, where the yield stress and the viscosity of the 

displacing fluid are smaller than those of the 

displaced fluid. In such cases, static residual layers 

may arise on the wall, when the yield stress of the 

previous fluid is not overcome. The authors 

presented a numerical method based on a transport 

equation and the continuity equation to describe the 

flow as well as two-dimensional numerical 

simulations.  The results show that the static residual 

layers tend to a constant thickness, which depends 

on the ratio of the yield stresses of both fluids and 

the equilibrium viscosity of the flushing fluid. 

Several researchers used an Arbitrary 

Lagrangian-Eulerian finite element method to model 

the displacement of two immiscible Newtonian 

fluids in a vertical pipe and an annulus [17, 18]. The 

method is able to predict the interface well near the 

wall but cannot predict the shape of the front of the 

displacing fluid near the center of the domain. The 

use of a dimensionless time to evaluate the 

breakthrough time was demonstrated in [18]. This 

scaling is based on the physical time, velocity and 

length of the section the breakthrough time is 

determined for. 

The displacement of miscible fluids with 

moderate viscosity ratios in nearly horizontal pipes 

and ducts was studied by Taghavi et al. [19]. The 

results indicate that the displacement efficiency is 

reduced when the viscosity of the previous fluid is 

larger than that of the flushing fluid. 

Liebmann et al. [20] investigated flushing 

processes of pipework numerically for two non-

Newtonian fluids with similar density and a 

moderate ratio of the two fluids yield stresses. The 

large viscosity of both fluids resulted in laminar 

flow at small Reynolds number. A dimensionless 

time was used, which was calculated from the 

maximum velocity, the time and the distance of the 

considered cross-section from the inlet. It was found 

that the flow was not affected by the elbow bend 

included in the considered pipework. The use of the 

dimensionless time allowed for comparison of 

results in different cross sections. In subsequent 

work [21], the effect of temperature on the flushing 

process was studied. A lower apparent viscosity of 

the previous fluid compared to that of the flushing 

fluid leads to faster flushing, which can be achieved 

by heating the previous product or the walls.  

Using the same numerical approach, 

simulations for eight different cases with varying 

flow velocity, temperature and combination of 

previous and flushing fluid are validated against 

experimental data presented by Heide et al. [22]. 

The numerical results show very good agreement 

with the experimental data. While the simulation 

data allowed for detailed insight into the flow 

features without the need for a test facility, the 

results took multiple days to be generated. 

Since both fully resolved numerical simulations 

and experiments are costly, they cannot be applied 

to design flushing processes of entire facilities or 

large ranges of fluid properties. A computationally 

inexpensive and quick way to model flushing 

processes of non-Newtonian fluids in pipes was 

proposed by Liebmann et al. [6]. The simplified 

model is based on solving a transport equation for a 

phase indicator 𝛼 and assumes identical properties 

of the previous and flushing fluid. While the full 

scale numerical simulation of a pipe with length 𝐿 =
1 m requires multiple days of computation time, the 

simplified model yields accurate results for the 

considered case within seconds [6]. For large 

differences in the fluid properties, especially the 

rheology model parameters, the predictive quality of 

the simplified model is expected to decrease since 

the model assumptions are violated. The wide 

application of the simplified model for cases where 

the fluid properties vary significantly is therefore 

currently not possible. 

In this contribution the flushing process of two 

non-Newtonian fluids in a pipe is investigated 

numerically. As an exemplary process, chocolate 

flushing is considered, where a previous chocolate 

is flushed out by second flushing chocolate. A wide 

range of realistic fluid properties is determined and 

used in subsequent numerical simulations to 

investigate their influence on the flushing process. 

The results are compared to the simplified model 

introduced by Liebmann et al. [6] to evaluate the 

models performance for varying fluid properties. 

Finally, an extension of the simplified model is 

proposed here and evaluated regarding its capability 

to predict the numerical results. 

DETERMINING REALISTIC FLUID 

PROPERTY VARIATION OF CHOCOLATES 

In both the food and petroleum industry fluids 

with non-Newtonian rheology occur. This is 

frequently modeled using the Herschel-Bulkley 
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model [23], the Bingham model [24], the Casson 

model and the Windhab model [23, 25]. The latter 

was first introduced by Eischen and Windhab [26] 

and uses the following equation for 𝜏 ≥ 𝜏0: 

𝜏 = 𝜏0 + (𝜏1 − 𝜏0) (1 − exp (−
�̇�

�̇�∗
)) + 𝜂∞�̇�       (1) 

For 𝜏 < 𝜏0, the fluid is not yielded and �̇� = 0. 
The model contains four parameters with physical 

meaning, so that it is able to capture more complex 

rheological behavior. Once the yield stress 𝜏0 is 

overcome, a shear-induced loss of structure occurs. 

At �̇� = �̇�∗ this loss attains its maximum. The 

parameter 𝜏1 is referred to as extrapolated yield 

stress [25]. Finally, the equilibrium viscosity 𝜂∞ is 

the apparent viscosity reached at high shear rates. 

Setting 𝜏0 = 𝜏1 = 0 leads to an equation for a 

Newtonian fluid, whereas setting 𝜏0 = 𝜏1 ≠ 0 leads 

to an equation for a Bingham fluid. 

 For foodstuff, e.g., chocolate, an excellent fit of 

the rheological behavior was demonstrated using 

either the Power-Law, the Casson or the Windhab 

model by Glicerina et al. [27]. For this contribution 

chocolate was chosen as exemplary previous and 

flushing fluid and the Windhab model, see Eq. (1), 

was chosen as the rheological model. By adapting 

the model constants, different behavior of both 

fluids can be represented. In order to determine a 

realistic range of the fluid properties, the Windhab 

model parameters were evaluated for six white, 

seven milk and six dark chocolates. They were 

determined using the method described in previous 

works [20, 22]. As an example, 𝜏0 and 𝜏1 for all of 

these samples are depicted in Fig.  1. A linear fit 

𝜏1 = 1.58𝜏0 (coefficient of determination 𝐶𝑂𝐷 =
0.93) between both variables is used to reduce the 

amount of free parameters for the investigation. 

Furthermore, the yield stress of the chocolates is 

seen to vary between 𝜏0 = 8 Pa and 50 Pa. For 𝜂∞ 

and �̇�∗ other fits can be found using the same dataset. 

In this contribution 𝜂∞/[Pa s] = 0.14𝜏0/[Pa] and 

�̇�∗/[s−1] = 43.8(𝜏0/[Pa])
−0.5  are used. With these 

decisions, the yield stress 𝜏0 becomes the only 

parameter to describe the rheological behavior. Any 

such fluid is referred to as a “model fluid” hereafter. 

To cover the entire range of realistically occurring 

values of 𝜏0, six model fluids 𝜏0 =
{5,10,20,30,40,50} Pa are used. It should be noted, 

that the values reported for the shear rate dependent 

viscosity of oil at various temperatures by Pedersen 

et al. [28] fall within the range investigated in the 

present work. A similar approach could thus be 

followed to investigate flushing processes in oil 

manufacturing.  

Since most flushing processes include products 

of similar ingredients, their densities do not vary 

significantly. For this reason, equal densities for 

previous and flushing fluid are assumed and set to 

𝜌 = 1000 kg/m3 here. Both fluids are considered to 

be immiscible. 

 
Fig.  1. Windhab model parameters 𝜏0 and 𝜏1 of 19 

different samples of chocolates and linear fit 

indicated by the dashed line. Color corresponds to 

color of chocolate. 

SIMULATION IN OPENFOAM 

Simulation Setup 

The simulations were conducted using the 

multiphase flow solver multiphaseInterFoam of 

OpenFOAM v7 which uses the volume of fluid 

(VOF) method to track the distribution of the 

respective phases in a multiphase flow. The 

continuity and momentum equations were solved 

together with a transport equation for the phase 

indicator 𝛼, which specifies how much flushing 

fluid is contained in a cell. 

Gravitational effects were neglected, as they 

were shown to have no significant influence forn the 

flow regime considered here [20]. Hence, the flow 

is expected to be axisymmetric and the 

computational domain was reduced to a wedge of 

the pipe with axisymmetric boundary conditions in 

azimuthal direction. This greatly reduces the 

computational cost. The domain consists of a 

linearly extruded wedge with an opening angle of 

𝛽 = 2° and a side length of 𝑅 = 𝐷/2 where 𝐷 =
0.05 m is the diameter of pipe. The inlet is located 

at 𝑥 = 0 and the outlet at 𝑥 = 𝐿 = 10 𝐷. A total of 

50 cells was used to resolve the radial direction with 

an increased resolution near the wall, where cell 

smallest has a height of Δ𝑟/𝑅 = 0.009. In azimuthal 

and axial direction one cell and 200 cells were 

employed respectively. This results in a total of 10 k 

cells for one simulation.  

At the inlet, flushing fluid enters the domain. 

The velocity profile of fully developed axial pipe 

flow of flushing fluid was imposed, with an average 

velocity of 𝑢b = 0.1 m/s. The domain is initially 

filled with previous fluid. Its velocity distribution 

corresponds to the analytical solution of developed 

flow of previous fluid inside a pipe. The analytical 

solution for developed pipe flow of a single 

Windhab fluid can be found in the literature and 

consists of a fully yielded region towards the wall 

and an unyielded region towards the pipe center 
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[29]. In the unyielded region a constant maximum 

velocity 𝑢max occurs which stretches from the pipe 

center at 𝑟 = 0 to the plug flow radius 𝑟0 = 2𝜏0/𝑓, 

where 𝑓 is the absolute value of the pressure 

gradient.  

The rheological data of both fluids is based on 

the parameters determined in the previous section. 

The rheological model, see Eq. (1), was 

implemented in OpenFOAM and limited to a 

maximum viscosity of 𝜈max = 10
4𝜂∞/𝜌 for 

numerical reasons, as previously discussed in the 

literature [20]. 

A total of 25 simulations were carried out using 

different values of 𝑚. Here, 𝑚 = 𝜏0,F/τ0,P refers to 

the ratio of the yield stresses of the flushing fluid and 

previous fluid. Both previous and flushing fluid 

were chosen from the model fluids described in the 

second section. Combinations of these fluids were 

chosen to cover a large range of 𝑚. For simulations 

with 𝑚 < 1, the yield stress of the flushing fluid is 

listed in Table 1. The cases with 𝑚 > 1 were 

simulated as well, with the yield stress of the 

flushing fluid and previous fluid being interchanged. 

An additional simulation was carried out for 𝑚 = 1 

and 𝜏0,F = 20 Pa. 

Table 1. List of simulations with 𝑚 < 1. 

𝑚 [−] 0.1 0.13 0.17 0.2 0.25 0.33 

𝜏0,F [Pa] 5 5 5 10 10 10 

𝑚 [−] 0.4 0.5 0.6 0.67 0.75 0.8 

𝜏0,F [Pa] 20 10 30 20 30 40 

Simulation results 

Evaluation procedure.  To quantify the height of the 

remaining layer, the radial position of the interface 

of the two fluids was determined, termed the contact 

radius 𝑟c here. With the VOF method, the interface 

cannot be tracked explicitly, so that its position was 

identified with the position where 𝛼 = 0.5, which 

was obtained by interpolation. 

Interface progression for different yield stress 

ratios 𝒎.  The progression of the interface of the two 

fluids throughout the domain over time is shown in 

Fig.  2 for the case where 𝑚 = 2.5. The interface 

progresses quickly, with constant velocity, in the 

center of the pipe. As a result, the center is 

completely filled with flushing fluid after a little 

more than three seconds. This is due to the flushing 

fluid progressing with 𝑢max for 0 ≤  𝑟 ≤ 𝑟0,F. With 

increasing radial position, the interface progresses 

over shorter axial distances, since the velocity 𝑢(𝑟) 
decreases towards the wall.  

Fig.  3 displays a comparison of the interface 

shape for different ratios 𝑚 > 1 at the same physical 

time 𝑡 = 2.5 s and in Fig.  4 for 𝑚 < 1. In all cases 

shown in Fig.  3, a common flushing fluid with 

𝜏0,F = 50 Pa and thus the same inlet velocity profile 

 
Fig.  2. Contact radius 𝑟c along the pipe axis at 

different times for 𝜏0,F = 50 Pa and 𝑚 = 2.5. 

was used, whereas in Fig.  4 the same previous fluid 

𝜏0,P = 50 Pa was chosen. For comparison the 

analytical solution for 𝑚 = 1 is shown in both 

figures. 

Three regions can be distinguished in the graph 

for all cases. Near the wall the contact radius is an 

almost linear function of the axial position, while in 

the center of the pipe the axial position is constant 

over the radius. In between these two, an 

intermediate region is observed, featuring one 

turning point of the profile for 𝑚 < 1 and two 

turning points for 𝑚 > 1, while the profile has none 

for 𝑚 = 1. 

With decreasing difference between 𝜏0,F and 

𝜏0,P, the numerical results are increasingly closer to 

the analytical solution for 𝑚 = 1, which is expected. 

For 𝑚 > 1, both the yield stress 𝜏0,F, the equilibrium 

viscosity 𝜂∞,F and thus the apparent viscosity of the 

flushing fluid are greater than that of the previous 

fluid. This leads to an increased displacement in 

axial direction for fully yielded regions 𝑟 ≫ 𝑟0 and 

thus the slope near the wall tends to a nearly 

horizontal position. Near the center of the pipe, 

where the apparent viscosity tends to 𝜈max, this 

 
Fig.  3. Contact radius 𝑟c over axial coordinate 𝑥 at  

𝑡 = 2.5 s from the numerical simulations for 

selected ratios 𝑚 > 1, all with 𝜏0,F = 50 Pa and 

analytical solution for 𝑚 = 1. 

 
Fig.  4. Contact radius 𝑟c over axial coordinate 𝑥 at 

𝑡 = 2.5 s from the numerical simulations for 

selected ratios 𝑚 < 1, all with and 𝜏0,P = 50 Pa and 

analytical solution for 𝑚 = 1. 



Heat Exchanger Fouling and Cleaning – 2024 
 

 

355 

ISBN: 978-0-9984188-3-4; Published online www.heatexchanger-fouling.com 

 

displacement is inhibited and to fulfill continuity the 

interface progresses shorter distances in axial 

direction for 𝑚 > 1. While for moderate ratios 1 ≤
𝑚 ≤ 2.5, the difference between the cases is almost 

not perceptible the deformation of the interface near 

the wall can clearly be seen for larger 𝑚. 

For 𝑚 < 1 the opposite effect is observed. The 

interface progresses further in axial direction 

towards the pipe center with decreasing 𝑚, i.e., with 

increasing difference between 𝜏0,F and 𝜏0,P. This can 

be observed by the increasing absolute value of the 

slope near the wall. Within the transition region, the 

slope tends to an almost constant value, which can 

be seen best for the lowest ratios 𝑚. This means, that 

between the flushing front at large 𝑥 and the inlet at 

𝑥 = 0, the contact radius tends to an almost constant 

value over 𝑥 with decreasing 𝑚. For moderate ratios 

𝑚 > 0.4 the difference between the cases is 

relatively small compared to those at high ratios. 

Evolution of the interface when rescaling time.   

For most industrial flushing processes, a relevant 

question to help determine the end of the flushing 

process is the time needed to obtain a target value 

for the contact radius, as this gives insights into 

contamination risks. This can be visualized by 

plotting either the contact radius over time 𝑟c(𝑡) for 

a discrete location 𝑥 or by plotting the contact radius 

over the axial coordinate 𝑟c(𝑥) at a discrete time 𝑡 as 

shown in Fig.  3 and Fig.  4.  

Both approaches may be combined by using a 

non-dimensional time �̂� = 𝑡𝑢max/𝑥. Here, 𝑢max is 

the velocity of the flushing fluid within the 

unyielded region of the flushing fluid. This 

representation has several advantages, as 𝑟c(�̂�) leads 

to a comprehensive visualization of how much 

flushing time needs to pass to obtain the targeted 

contact radius. Since �̂�−1 = 𝑥/(𝑢max𝑡) = �̂� could 

be interpreted as dimensionless distance, plotting the 

contact radius over the inverse of the dimensionless 

time, i.e., �̂�−1, offers a dimensionless representation 

of the position of the interface. 

With increasing time, the interface stretches in 

axial direction. When 𝑚 = 1, where no radial 

velocity components occur. By using the 

dimensionless representation this manifests itself as 

a common graph of the dimensionless interface and 

of the contact radius over dimensionless time. Any 

deviation from the common graph is due to radial 

velocity components and a resulting deformation in 

that direction, which occurs, whenever 𝑚 ≠ 1.  

Fig.  5 shows plots of the contact radius over 

dimensionless time for 𝑚 = 2.5, 𝑚 = 1 and 𝑚 =
0.4 exemplarily. For 𝑚 = 1 it can easily be seen that 

all curves form a common graph. At �̂� = 1 the core 

removal phase begins with a steep increase of 𝑟c/𝑅 

over dimensionless time. Once the slope of 𝑟c/𝑅 

decreases, the core removal phase transitions into 

the layer removal phase. Qualitatively, the graphs 

 
Fig.  5. Interface over dimensionless time for three 

different cases. 

looks similar for the two cases where 𝑚 ≠ 1 in Fig.  

5. However, it can be seen, that slight deviations 

occur over time. 

For small dimensionless times, i.e., during the 

core removal phase, this deformation is most 

prominent. With increasing physical time, the 

graphs converge to a constant shape. For 𝑚 = 2.5 

the interface moves further towards the wall at 

𝑟/𝑅 = 1, whereas for 𝑚 = 0.4, the interface 

deforms away from the wall. Comparing the three 

cases, different contact radii are achieved in the 

same dimensionless time. 

The results for different ratios 𝑚 and the 

dimensionless time needed to obtain four different 

exemplary target values of 𝑟c are plotted in Fig.  6. 

With increasing 𝑚 and decreasing target value of 𝑟c, 
the dimensionless time needed to reach that value 

decreases. For some low values of 𝑚, e.g., 𝑚 = 0.1, 

none of the target values were obtained within the 

simulation time. Therefore, no data is shown for 

those ratios. Fig.  6 shows, that the dimensionless 

time needed to obtain a target value of 𝑟c decreases 

non-linearly with increasing 𝑚. This is in line with 

the observation of the deformation of the interface 

with changing 𝑚. It should be noted, that the results 

form a common graph for each target contact radius, 

even though the yield stress of the flushing fluid 𝜏0,F 

is varied between the simulations. For the 

investigated bulk velocity 𝑢b, the ratio of the two 

yield stresses 𝑚, therefore is the main influence on 

the flushing time. Furthermore, the layer removal 

phase, which is crucial in determining the end of a 

flushing process, can be visualized at different 

locations and times using the dimensionless time. 

 
Fig.  6. Dimensionless time needed to obtain 

different contact radii for varying 𝑚. 
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EXTENSION OF SIMPLIFIED MODEL 

Model overview 

The results of the previous section illustrate that 

for 𝑚 ≈ 1 the solution obtained with 𝑚 = 1 

provides a reasonable approximation for the 

flushing process, but for larger values an 

improvement of the approach is needed. The model 

previously developed by the authors is based on 

solving the transport equation for the phase indicator 

𝛼 with 𝑚 = 1 [6]. 

𝜕𝑡𝛼 + 𝑢tr𝜕𝑥𝛼 = 0      (2) 

Here, 𝑢tr corresponds to a transport velocity in 

axial direction for the phase indicator 𝛼. For the 

special case 𝑚 = 1, the properties of previous and 

flushing fluid are identical. Therefore, 𝑢tr can be set 

to the solution of a single phase inside the pipe and 

contact radius for both core and layer removal can 

be determined analytically. For 𝑚 ≠ 1 the transport 

velocity depends on the fluid present at a given 

radius. This is accounted for by using the analytical 

solution of two phase annular flow 𝑢(𝑟) as transport 

velocity, which will be derived in the following 

section. Since the location of 𝑟c is a priori unknown 

𝑢tr = 𝑢(𝑟 = 𝑟c) is chosen.  

Analytical solution of axisymmetric flow of two 

Windhab fluids 

Steady axisymmetric and developed flow of 

two Windhab fluids with a common density inside a 

pipe is considered. The absolute value of the 

pressure gradient in axial direction 𝑓 is assumed to 

be constant and no other external forces influence 

the flow. The streamwise momentum equation in 

cylindrical coordinates yields  

𝑓 =
1

𝑟

𝜕(𝑟𝜏𝑟𝑥)

𝜕𝑟
         (3) 

This holds for the flushing fluid and the previous 

fluid, denoted by using the index 𝑖 = F and 𝑖 = P, 

respectively. Integrating Eq. (3) over the radius 𝑟 

and applying the symmetry condition at 𝑟 = 0 gives 

𝜏𝑖 = 𝜏𝑟𝑥 = 𝑓
𝑟

2
        (4) 

which holds for both phases. Hence, the shear stress 

is a linear function of the pressure gradient in axial 

direction. Inserting the Windhab model, see Eq. (1), 

for regions where 𝜏𝑖 ≥ 𝜏0,𝑖 , i.e., where 𝑟 ≥ 𝑟0,𝑖, leads 

to  

𝑢i(𝑟) = 𝜔i(𝑟) + 𝐼1,i      (5) 

𝜔𝑖(𝑟) = −
𝑏𝑖
2

𝑐𝑖
Ω𝑖(𝑟) −

𝑏𝑖
2

2𝑐𝑖
Ω𝑖
2(𝑟) + 𝑐𝑖

𝑟2

2
+ 𝑑𝑖𝑟 (6) 

Ω𝑖(𝑟) = 𝑊0 (
𝑎𝑖

𝑏𝑖
exp (

𝑑𝑖+𝑐𝑖𝑟

𝑏𝑖
))    (7) 

Here, 𝑊0 is the principal branch of the Lambert 

W-function which provides the solution 𝑊0(𝑥) = 𝑦 

for equations of type 𝑦𝑒𝑦 = 𝑥. The auxiliary 

function 𝜔𝑖 and Ω𝑖  contain the rheological 

parameters 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 and 𝑑𝑖 of the flushing and 

previous fluid respectively for 𝑖 = F, P. They are 

determined from 𝑎𝑖 = (𝜏1,𝑖 − 𝜏0,𝑖)/𝜂∞,𝑖, 𝑏𝑖 = �̇�𝑖
∗, 

𝑐𝑖 = −𝑓/(2𝜂∞,𝑖), 𝑑𝑖 = 𝜏1,𝑖/𝜂∞,𝑖 and depend solely 

on the rheological properties of the respective fluid, 

as well as 𝑓. 

For regions, where 𝜏𝑖 < 𝜏0.𝑖, i.e., 𝑟 < 𝑟0,𝑖, one 

obtains 

𝑢i
′(𝑟) = 0        (8) 

which after integration yields  

𝑢𝑖(𝑟) = 𝐼2,𝑖        (9) 

The two constants 𝐼1,𝑖 and 𝐼2,𝑖 can be determined 

from the boundary conditions. At the interface both 

fluid must have the same velocity 𝑢P(𝑟c) = 𝑢F(𝑟c) 
and at the wall no slip occurs, i.e., 𝑢P(𝑅) = 0. 

Furthermore, at the plug flow radii the velocity must 

be continuous. 

The parameter space of the problem is quite 

large, as it is spanned by the plug flow radii of the 

two considered Windhab fluids 𝑟0,i, the pipe radius 

𝑅, and the contact radius 𝑟c. This results in 24 

different configurations. Of these, 14 configurations 

result in single phase flow or no flow, i.e., 𝑢(𝑟) =
0, because either the contact radius or both plug flow 

radii are larger than the pipe radius, i.e., 𝑟c > 𝑅 or 

(𝑟0,F > 𝑅)⋀(𝑟0,P > 𝑅). The case 𝑟c < 𝑟0,F < 𝑅 <

𝑟0,P  is also discarded, as it results in no flow. The 

remaining nine configurations can be clustered into 

five groups, shown in Fig.  7. The corresponding 

analytical solution can be determined for each group 

and is shown exemplarily for the first group, shown 

on the left in Fig.  7. For this configuration, the 

contact radius is the smallest of the four radii and the 

plug flow radius of the previous fluid lies within the 

pipe, i.e., (𝑟c < 𝑟0,P)⋀( 𝑟c < 𝑟0,F)⋀(𝑟0,P <

𝑅).Below the contact radius unyielded flushing fluid 

flows at the same velocity as the unyielded previous 

fluid around it. For 𝑟 ≥ 𝑟0,P the previous fluid is 

yielded. This leads to 

𝑢(𝑟) = {
𝜔P(𝑟) − 𝜔P(𝑅), 𝑟 ≥ 𝑟0,P

𝜔P(𝑟0,P) − 𝜔P(𝑅), 𝑟 < 𝑟0,P
  (10) 

For the remaining groups shown in Fig.  7, the 

analytical solution is detailed in the appendix. 

For a given pressure gradient the solution for 

𝑢(𝑟) can be calculated explicitly using the Eq. (10) 

or the ones given in the appendix. For a given bulk 

velocity 𝑢b the solution has to be determined 
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iteratively. The resulting solution is valid for any 

two fluids with Windhab rheology as long as the 

assumptions made for the derivation are met. For 

differing densities of flushing and previous fluid 

slight modifications have to be made. Since the 

product densities from one product family typically 

do not differ significantly the solution might still 

lead to accurate results. The assumption of a 

constant layer thickness throughout the pipe is valid 

during the layer removal phase. The derived solution 

is therefore expected to lead to accurate predictions 

of the velocity distribution during this phase. For the 

core removal phase the assumption of a constant 

pressure gradient along the pipe axis and a constant 

pressure within a cross section does not hold. Hence, 

the model is not applicable to that phase. This is not 

detrimental, since the duration of the core removal 

phase is short compared to the duration of the layer 

removal phase. 

Evaluation of the simplified model 

In this section, the results of the model using the 

analytical solution for single phase flow (SPM) [6] 

and the one using the solution for two phase flow 

(TPM) as transport velocity 𝑢tr are shown and 

compared to the solution obtained using the 

numerical simulation. Results for three exemplary 

cases are shown in Fig.  8. 

For 𝑚 = 2.5 the contact radius 𝑟c determined 

using the TPM is in agreement with the numerical 

simulation for �̂� > 4. This region mostly belongs to 

the layer removal phase. During the core removal 

phase, for �̂� < 4, the predicted contact radius is 

larger than the one obtained from the numerical 

simulation. During that phase, the assumption of a 

constant layer height, which was made to derive the 

analytical solution, does not hold. The SPM appears 

to obtain a better result. This, however, is most 

likely due to the fact, that in this case, the interface 

is assumed to not deform at all. Since for 𝑚 > 1 no 

static residual layers will arise, it can be shown 

mathematically, that lim
�̂�→∞

𝑟c/𝑅 = 1 for both the TPM 

and the SPM. The difference between both models 

will therefore tend to zero.  

For 𝑚 = 1 both models produce the same 

results and are in agreement with the fully resolved 

simulation. This case also serves as mutual 

validation of both the numerical simulation and the 

newly derived TPM. For the case, where 𝑚 = 0.4, 

the numerical data is not predicted well using the 

TPM during either the core or layer removal phase. 

In the numerical simulation for 𝑚 = 0.4 the slope of 

the contact radius tends towards a low value more 

quickly than in the case where 𝑚 = 2.5, indicating a 

short core removal phase and quick transition to 

layer removal in comparison. The TPM consistently 

predicts lower values for 𝑟c/𝑅 and a larger slope, 

indicating that the core removal phase in this model 

transitions into the layer removal phase much slower 

than in the simulations. The assumption of a 

constant layer thickness, results in no radial velocity 

components in the TPM. The TPM can therefore 

only advect the interface in axial direction at a 

relatively low velocity due to the high viscosity of 

the previous layer. This leads to a delayed prediction 

of the cleaned radius. The SPM in comparison 

obtains better agreement with the simulation data, 

because it overestimates the velocity at the contact 

radius. 

A feature that makes the TPM superior to the SPM 

is the ability to predict potential static residual layers 

of previous fluid on the wall, see Fig.  7 in the 

middle. For given rheological parameters and bulk 

velocity 𝑢b the analytical solution can be evaluated, 

so that 𝑟0,P ≥  𝑅. Of the investigated cases, all those 

where 𝑚 < 0.25 resulted in a static residual layer. 

 
Fig.  8. Contact radius over dimensionless time for 

three exemplary cases obtained with the data from 

the numerical simulation (OpenFOAM), the 

simplified model using the two phase velocity 

profiles (TPM) and the model from [6](SPM). 

Fig.  7. Schematic representation of the five different configurations of annular flow of two Windhab fluids in a 

pipe with radius 𝑅, depending on the location of the plug flow radii 𝑟0,F and 𝑟0,P and the contact radius 𝑟c. The 

yielded and unyielded regions of previous and flushing fluid are distinguishable by different hatchings.  
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Fig.  9. Ratio of the contact radius obtained with the 

TPM and SPM respectively and the numerical 

simulation for different ratios 𝑚. 

The error for the contact radius obtained with 

each model is compared to the one in the 

OpenFOAM simulation 𝜀 = (𝑟c,mod − 𝑟c,OF)/𝑟c,OF 

and plotted for all cases at �̂� = 20. The results are 

shown in Fig.  9. For 𝑚 > 1, the error is slightly 

smaller using the TPM. This is due to the 

assumption of equal properties in the SPM, which 

for 𝑚 > 1, leads to a higher viscosity compared to 

the one used in the TPM and thus slower transport 

of fluid within the remaining previous layer. For 

𝑚 < 1, the SPM and TPM obtain increasingly larger 

absolute errors with decreasing 𝑚. The TPM obtains 

slightly smaller absolute errors than the SPM for 

𝑚 > 0.5. For 𝑚 < 1, the SPM overestimates the 

contact radius and the TPM underestimates the 

contact radius. In combination both models can be 

used to determine a corridor, within which the 

contact radius will be. In addition, only the TPM can 

predict arising static residual layers. 

CONCLUSION 

In this contribution flushing processes of non-

Newtonian fluids, whose rheology is described by 

the Windhab model were investigated. Flushing of 

one chocolate by another was chosen as an 

exemplary process. Fluids with yield stresses 

ranging from 𝜏0 = 5 − 50 Pa were investigated. 

The range resulted from the analysis of 19 different 

chocolate samples. Literature data [28] suggests, 

that various oils at different temperatures could be 

modeled using a similar range. Thus, the 

conclusions drawn here can be expanded to oil 

flushing processes. 

A total of 25 numerical simulations were 

performed to determine the influence of differing 

fluid properties on the flow. A dimensionless 

representation of time was used to track the 

evolution of the contact radius at a given location 

and to obtain the shape of the interface. 

The numerical simulations show that with 

increasing 𝑚 the contact radius obtained after the 

same flushing time increases. For the considered 

cases, the contact radius depends only on the ratio 𝑚 

and not on the absolute yield stress of either model 

fluid. The common bulk velocity 𝑢b used in this 

work allows an easy comparison of the material 

costs. For cases where 𝑚 < 1, significantly more 

flushing time is necessary to obtain the same contact 

radius than in cases where 𝑚 > 1. 

 Using the understanding from the numerical 

simulations an extension for a simplified algebraic 

model was proposed to predict the contact radius 

during both the core and layer removal phase. 

Therefore, the analytical solution of annular flow of 

two Windhab fluids was derived, which is not 

available in the literature to the best of the authors 

knowledge. The analytical solution is particularly 

valuable, since the Windhab model captures several 

other rheological models for special parameter 

selections, e.g., the Bingham model. Furthermore, 

the use of the analytical solution allows the 

prediction of static residual layers, which can arise, 

when 𝑚 < 0.25 for the investigated bulk velocity of 

𝑢b = 0.1 m/s. 
The results of the TPM and those of the 

numerical simulations are compared to those of a 

previously developed model [6]. While the present 

model outperforms the previous model for 𝑚 > 1 

during the layer removal phase, it underestimates the 

contact radius in the core removal phase. This is due 

to the neglect of the radial velocity component. The 

SPM in comparison shows better agreement during 

the core removal phase. For 𝑚 < 1, both models 

show significant weaknesses, as the contact radius is 

over- and underpredicted by almost 20% for the 

SPM and TPM respectively. Improvement of the 

present model could be achieved by including the 

radial velocity component in the model. This, 

however, would yield a system of partial differential 

equations, that has to be solved numerically, 

resulting in larger computational times. The model 

presented here, can produce results within seconds. 

For 𝑚 > 1, the TPM can thus be used to obtain 

quick predictions for flushing processes. For 𝑚 < 1, 

the combination of the TPM and SPM yield reliable 

upper and lower bounds for the evolution of the 

contact radius over time. 

The analytical solution of annular flow further 

allows the quick determination of possible static 

residual layers. If they occur, the combination of 

flushing and previous fluid should be avoided, as the 

complete removal of previous product is not 

achievable for this combination. Even if no static 

residual layers arise, the flushing time and material 

and energy costs are high for cases with low 𝑚. For 

practical applications, it is therefore convenient to 

use moderate ratios of 𝑚 ≈ 1 for cases when 𝑚 <
1. In those cases, the TPM can predict the contact 

radius with small errors, but at significantly lower 

computational times, than numerical simulations or 

experiments. 
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APPENDIX 

Analytical solution for annular two phase flow 

Second group 𝒓𝟎,𝑷 < 𝒓𝒄 < 𝒓𝟎,𝑭.  The second group, 

see Fig.  7 second to left, consists only of 

configurations, where the contact radius is greater 

than the previous fluids plug flow radius, but 

smaller, than the flushing fluids plug flow radius. 

Thus, a yielded region of previous fluid stretches 

from the wall to the contact radius, where it meets 

an unyielded flushing fluid. We obtain 

𝑢(𝑟) = {
𝜔P(𝑟) − 𝜔P(𝑅), 𝑟 ≥ 𝑟c
𝜔P(𝑟c) − 𝜔P(𝑅), 𝑟 < 𝑟c

 

Third group 𝒓𝟎,𝑭 < 𝒓𝒄 ≤ 𝑹 ≤ 𝒓𝟎,𝑷.  The third group 

of configurations, see Fig.  7 in the middle, consists 

of three regions as well. The previous fluid remains 

unyielded, i.e., at rest on the wall as a static residual 

layer. For the flushing fluid a yielded and unyielded 

region exist. 

𝑢(𝑟) = {

0,              𝑟 ≥ 𝑟c
𝜔F(𝑟) − 𝜔F(𝑟c), 𝑟c > 𝑟 ≥ 𝑟0,F

𝜔F(𝑟0,F) − 𝜔F(𝑟c),  𝑟0,F > 𝑟

 

Fourth group (𝒓𝟎,𝑷 < 𝒓𝒄) ⋀(𝒓𝟎,𝑭 < 𝒓𝒄).  The fourth 

group, see Fig.  7 second to right, covers 

configurations, where both plug flow radii are 

smaller than the contact radius. It consists of three 

regions. Near the wall, the previous fluid is yielded. 

At the contact radius, yielded flushing fluid is 

present, which becomes unyielded towards the pipe 

center. We obtain 𝑢(𝑟) = 

{

 𝜔P(𝑟) − 𝜔P(𝑅),            𝑟 ≥ 𝑟c
𝜔F(𝑟) − 𝜔F(𝑟c) + 𝜔P(𝑟c) − 𝜔P(𝑅), 𝑟c > 𝑟 ≥ 𝑟0,F

𝜔F(𝑟0,F) − 𝜔F(𝑟c) + 𝜔P(𝑟c) − 𝜔P(𝑅),         𝑟0,F > 𝑟

 

Fifth group 𝒓𝟎,𝑭 < 𝒓𝒄 < 𝒓𝟎,𝑷 < 𝑹.  The fifth group, 

see Fig.  7 on the right, contains yielded and 

unyielded regions for both fluids and thus consists 

of four regions. It follows, that 𝑢(𝑟) = 

{
 
 

 
 
𝜔P(𝑟) − 𝜔P(𝑅), 𝑟 ≥ 𝑟0,P

𝜔P(𝑟0,P) − 𝜔P(𝑅), 𝑟0,P > 𝑟 ≥ 𝑟c

𝜔F(𝑟) − 𝜔F(𝑟c) + 𝜔P(𝑟0,P) − 𝜔P(𝑅), 𝑟c > 𝑟 ≥ 𝑟0,F

𝜔F(𝑟0,F) − 𝜔F(𝑟c) + 𝜔P(𝑟0,P) − 𝜔P(𝑅) 𝑟0,F > 𝑟
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NOMENCLATURE 

Latin symbols 

𝑎 Windhab flow solution parameter, 1/s 

𝑏 Windhab flow solution parameter, 1/s 
𝑐 Windhab flow solution parameter, 1/(m s) 
𝑑 Windhab flow solution parameter, 1/s 
𝐷 Pipe diameter, m 

𝑓 Pressure gradient, Pa/m 

𝐼 Integration constant, - 

𝐿 Pipe length, m 

𝑅 Pipe radius, m 

𝑟 Radial coordinate, m 

𝑡 Time, s 
�̂� Dimensionless time, - 

𝑊0 Principal branch of Lambert W function, - 

𝑢 Velocity, m/s 
𝑥 Axial coordinate, m 

Greek symbols 

𝛼 Phase indicator used in VOF method, - 

𝛽 Opening angle of wedge, ° 

�̇� Shear rate, 1/s 
�̇�∗ Windhab-model parameter, 1/s 
𝜀 Error, - 

𝜂∞ Windhab-model parameter, Pa s 
𝜌 Density, kg/m3  
𝜏 Stress, Pa 

𝜏0 Yield stress, Pa 

𝜏1 Windhab-model parameter, Pa 

𝜔 Windhab solution function, m/s 
Ω Windhab solution function, - 

Subscript and superscript 

b Bulk 

c Contact 

i Index for flushing and previous phase 

F Flushing 

max Maximum 

P Previous 

0 Yield 

1,2 Subscripts for constants 
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